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1. INTRODUCTION 

The purpose of reliability, and more generally, of 
dependability studies is to calculate probabilities of 
undesirable events such as the failure of the mission of a 
system, or to estimate the probability distribution of some 
performances of the system: total production on a given time 
interval, maintenance cost, number of repairs etc. Usually, 
dependability studies are performed with dedicated methods 
and tools, based on discrete (and often even Boolean) models 
of systems: fault trees, Markov chains, Petri nets, BDMP 
(Boolean logic Driven Markov Processes) etc. EDF 
(Electricité de France) has a lot of experience about reliability 
modelling, and designed the Figaro modelling language in 
1990. This language generalizes all the above cited models, 
and allows casting knowledge on categories of systems in 
libraries. It is the basis of KB3 which is the reference tool 
used for building fault trees and dynamic models for 
probabilistic safety analyses of nuclear power plants and all 
other reliability analyses at EDF. 

Unfortunately, in some situations, a purely discrete 
representation of a system cannot be a good enough 
approximation: this is the case of hybrid systems, having both 
discrete and continuous parts, with strong interactions 
between them. Reliability analysts call the study of such 
systems "dynamic reliability". For such systems, the Figaro 
language can only provide step function approximations for 
representing the evolution of continuous variables: cf. 

Bouissou (2007). This is why we looked for better solutions 
for hybrid systems, and investigated the use of Modelica. In 
Bouissou et al. (2014) we showed that it is possible to add 
stochastic behaviour due to failures and repairs of 
components to a deterministic hybrid system described in 
Modelica. This paper explains how one can perform Monte 
Carlo simulations on such models, with a smart algorithm 
that minimizes the number of random numbers that must be 
generated. Moreover, this algorithm can be implemented 
using the standard Modelica solvers, which is a major 
advantage. We also looked for solutions to perform more 
classical dependability analyses (starting from a Modelica 
model) for systems for which the hybrid behaviour can be 
abstracted into a discrete behaviour, or even a Boolean model 
such as a fault tree. Our conclusion was that using Modelica 
itself would be extremely difficult because it would imply the 
cohabitation of two models in one: a detailed, physical 
simulation model for the nominal functioning and a more 
abstract model suited for dependability analyses. We finally 
concluded that a much easier and more efficient solution 
would be to generate automatically a Figaro model from the 
Modelica model, then use the mature Figaro tools for 
performing the needed transformations (like the generation of 
a fault tree) and calculations (of availability, reliability etc.).   

The main contribution of the present paper is to describe a 
method for doing this. This method is already partially (a few 
manual inputs are still necessary) implemented in two 
prototypes based respectively on the tools Dymola and 



 
 

     

 

OpenModelica, associated in both cases to the tools of the 
Figaro workbench. 

An auxiliary contribution of the present paper is the 
application of the method described in Bouissou et al. (2014) 
to a more complicated use case, which has served as a 
benchmark for numerous other methods. This application 
shows two things: the model is simple and “natural” with the 
proposed approach and the performances of the simulation 
are better than those of a recently published paper.     

To summarize, this paper illustrates by examples some of the 
results related to dependability analysis which were obtained 
in the MODRIO European project. It is organized as follows: 
the largest part of the article (sections 2 to 4) presents the 
connection that can be established between detailed 
simulation models in Modelica, and more abstract models 
written in Figaro, in order to generate fault trees or to 
perform probabilistic evaluations based on discrete models. 
Section 5 is an example of such a connection (for a telecom 
network), and Section 6 compares the method described in 
Bouissou et al. (2014) to other techniques on a well-known 
benchmark.    

2. THE FIGARO LANGUAGE AND TOOLS 

Given the existence of a large community of Modelica users, 
we will assume that this language is already known by the 
reader. The dedicated web site Modelica.org provides 
thousands of free resources including articles, component 
libraries, tutorials, forums, links to open source and 
commercial tools,  and of course the detailed specifications of 
the Modelica language. The Figaro language is more specific, 
this is why we give its main characteristics here.  

The Figaro language, created in 1990, is a domain specific 
object oriented modelling language dedicated to 
dependability with the following objectives, commented and 
exemplified in Bouissou et al. (1991):  

• provide an appropriate formalism for developing 
libraries (with generic descriptions of components); 

• be more general than all the usual reliability models. 
For example, in the above cited paper, it is shown 
that reliability block diagrams and Petri nets can be 
represented in Figaro; 

• find the best trade-off between modelling power (or 
generality) and possibilities for the processing of 
models. In particular, models with differential 
equations have been explicitly excluded from the 
scope of Figaro; 

• be as legible as possible (see example in section 5); 
• be easily associated with graphic representations. In 

(Bouissou et al. 1991) one can see how Petri nets, 
reliability block diagrams and also an electrical 
system could be input with their usual graphical 
representations in the very first version of the KB3 
tool, based on Figaro descriptions.  

The Figaro language has two levels, called order 1 and 
order 0. At order 1, its syntax allows to define generic 
constructions contained in reusable classes, while at order 0 it 
can only describe a particular system by means of objects.  

A class consists of two parts:  

⇒ a purely static and declarative part : 

• name of the class and of the class(es) whose 
characteristics it inherits; 

• interfaces (classes with which the concerned class will 
interact, possibly with constraints on the number of 
objects authorised for each interface); 

• constant characteristics; 
• state variables, with their initial values.  

⇒ a dynamic part : the occurrence and interaction rules 
describing the behaviour of the class. The occurrence 
rules describe elementary events with the conditions 
governing how they are triggered and the associated 
probability distributions. The purpose of the interaction 
rules is to propagate the effects that are immediate and 
certain consequences of an event in the system. These 
rules often make use of quantifiers in order to be valid 
irrespective of the content of sets of objects defined by 
the interfaces; simple examples of the use of quantifiers 
are given in section 5.3 (cf. class "link").  

The tool KB3 was designed to offer a generic graphical user 
interface for working with Figaro models, that can be tailored 
to each Figaro library. In KB3, a Figaro class can be 
associated equally well with an icon as with a link. This 
means that a Figaro link can be a complex object with rules, 
and not just a means to declare constraints (equality, 
conservation of flow) on state variables. This is an important 
difference between Figaro and Modelica. 

 

Fig. 1. The Figaro workbench overall architecture. 

Once the architecture of a system has been graphically input 
in KB3, the man-machine interface translates it into a list of 
objects described in Figaro language. The set "library + list of 
parameterized objects" is a complete model in order 1 Figaro 
language for a given system. This model is concise, but it 
would be very complex to use it directly, and not all the 
recommended checks could be run on it. For this reason, 
prior to any processing, this model is fully instantiated in 
order 0 Figaro, a very simple sub-language of order 1 Figaro 
which is suitable for description of the behaviour of a 
particular system, and which enables all consistency checks 
to be run and effective processing to be carried out. A formal 
definition of the semantics of the order 0 Figaro language is 
given in Bouissou and Houdebine (2002).  



 
 

     

 

The Figaro workbench is a set of tools designed to help a user 
define Figaro models, then process them in order to perform 
dependability analyses. Fig. 1 gives an overview of the main 
tools of the workbench, and shows how they are connected. 

3. ENGINEERING WORKFLOWS 

At EDF there are traditionally two parallel workflows for 
design and for dependability analyses, in different 
departments. In the first workflow, designers build Modelica 
models and simulate them in order to optimize the normal 
operation of systems; in the second one, reliability engineers 
estimate non-functional performances such as reliability, 
availability and maintainability of the system.  

The design information, needed to perform dependability 
studies, is "manually" transferred from the first to the second 
workflow. With the approach developed in the MODRIO 
project, it is now possible to transfer automatically the system 
structure from the first to the second workflow. This is 
illustrated on Fig. 2, which emphasizes fault tree based 
dependability studies; of course other studies of Fig. 1 are also 
possible.   

 

Fig. 2. The design and dependability analyses workflows at EDF. 

The benefits of this automatic transfer are: 

• assurance of consistency between the models used in the 
two workflows; 

• time saving, making it possible to get an immediate 
feedback from dependability performances during the 
design process; 

• the workflows remain largely independent; in particular, 
the Modelica and Figaro libraries can still be developed 
independently. Even the tools used in the two workflows 
can be maintained independently, except for their 
interface with the bridge created between them.  

4. FROM MODELICA TO FIGARO 

Fig. 3 explains the principles used to switch from a Modelica 
model to a Figaro model. Starting from a pure Modelica 
model designed for physical simulation, one can obtain a 
Figaro model by extracting objects (maybe not all of them, 
see example 1 below) and their inter-relations from the model 
and associating them to a well suited library in Figaro.  

The Figaro library contains the dependability models, 
including in particular the failures and repairs of components, 
with the associated reliability data (default values of failure 
rates and mean repair times).  

There are two possible levels of automation in the process. 

The first level (the one that is currently implemented in the 
two prototypes) is library independent, but it requires a few 
inputs from the user. In fact the binding of objects between 
the Modelica and the Figaro model must be "loose", because: 

• the structure of the Figaro model may be quite different 
from the structure of the Modelica model. This is due to 
the fact that different kinds of abstraction are used when 
going from a real system to a functional, simulation 
model on the one hand, and to a dysfunctional model on 
the other hand; 

• different Figaro libraries can be bound to a single 
Modelica model; this gives the possibility to do various 
kinds of studies, all from a single initial model. 

Fig. 3. From Modelica to Figaro. 

The binding is specified by associating a Figaro class name to 
each object of the Modelica model and by declaring the inter-
relations between objects, directly in Figaro syntax. This 
second kind of information is necessary because, as 
mentioned earlier, the ways connections between components 
are declared are quite different in Modelica and Figaro. This 
is exemplified in the telecom example in the next section.    

In order to generate Figaro 0 models from a Modelica tool, 
all the parameters and information needed by Figaro and that 
do not exist in Modelica must be integrated in Modelica in 
such a way that they do not affect in any way the original 
simulation model (without Figaro). That is why they must be 
added as annotations or as string parameters. We decided to 
use parameters, because they can be inherited, and this is 
very important in our approach. Moreover, parameters are 
part of the core of the Modelica language, which means that 
it will be possible to use the same models with all Modelica 
tools. 

The second level of automation consists in filling 
automatically the information on connections in the strings 
added to the Modelica model. This is library dependent, and 



 
 

     

 

we will explain how it can be done on the example given in 
the next section. 

5. EXAMPLE 1 (DISCRETE): TELECOM NETWORK 

This example will probably seem a bit artificial: this is due to 
the fact that we started from the abstract representation 
(explained in section 5.1) to derive a physical model (section 
5.2) while on real systems it is the other way round! But we 
chose that example because it is simple enough to be 
explained in an article and yet it poses difficult problems. We 
have reported in a MODRIO document (Bouissou 2014) how 
the same principles work perfectly on a real thermohydraulic 
system of a nuclear power plant with libraries encompassing 
thousands of lines in Modelica, and hundreds of lines in 
Figaro. 

5.1 Telecommunication network 

In a telecommunication network such as the one represented 
in Fig. 4, the classical so-called S-T connectivity problem 
consists in calculating the probability that a given target (a 
blue node) is connected to at least one source of information 
(a green node). Here, we make the simplest possible 
assumptions on the failure and repair processes of 
components: failure and repair times are all exponentially 
distributed, and components are all independent. Nodes and 
links can both fail. Despite the apparent simplicity of this 
example, it poses real challenges for generating fault trees: 
there are loops in the topology of the system, which, without 
a proper treatment will lead to invalid fault trees (containing 
loops). Moreover, the number of links connected to a node is 
not known in advance and thus the reliability model must be 
written in a way which is independent from the number of 
connections. To the best of our knowledge, these two 
problems are solved only by the tools based on Figaro. 

  

Fig. 4. Telecom network. 

5.2 Representation as a hybrid system 

A possible analog model of such a network in Modelica is an 
electrical circuit (built using the Modelica.Electrical.Analog 
library) where links are represented by resistors and source 
nodes by generators; the other nodes are represented by pins 
(components without behaviour that just serve as "hubs" for 
connections). Since we want to detect the propagation of the 
alternative signal generated by the source, three auxiliary 
resistors of 1 Ohm are needed. They do not have Figaro 
string parameters; hence they disappear completely in the 
conversion from the Modelica + Figaro strings model to the 
pure Figaro model. This shows an example of management of 
structural differences between the Modelica and the Figaro 
model. 

 

Fig. 5. Analog model of a telecom network: electrical circuit.  

Each link is represented by a resistor. Its normal behaviour is 
represented by a value of 10 Ohms, whereas its failure is 
represented by a value of 10,000 Ohms. It is also possible to 
simulate a failure of a node by setting the corresponding 
auxiliary resistor to 0. 

If only the first level of automation for going from the 
Modelica to the Figaro model is used, the user has to input 
manually the following information in the five resistors 
considered as links: "INTERFACE extremity x y;" where x 
and y are the nodes connected to the two ports of the link. 
This minimal information can be completed, if needed, by 
instructions declaring values for the failure or repair rates that 
will override the default values defined in the Figaro library. 

In order to leverage automation to level 2, one would have to 
write a little algorithm in Modelica that would do the 
following:  

For X in objects of the model 
   If X of class Link  
    Write in X.figaro_string : "INTERFACE ", 

name of object connected to X.positive_pin, 
name of object connected to X.negative_pin, ";" 

   End If 
End for  

5.3 The Figaro knowledge base for telecom networks 

Here is in extenso the library needed to generate a fault tree 
for any topology of telecom network that could be deduced 
from a Modelica simulation model such as the one of Fig. 4. 
Figaro keywords are written in uppercase. 

CLASS node; 
 CONSTANT 
 function DOMAIN 'source' 'target' 'intermediate'  
   DEFAULT 'intermediate'; 
 lambda DOMAIN REAL DEFAULT 1e-5; 
 mu DOMAIN REAL DEFAULT 0.1; 
 FAILURE fail LABEL "Failure of %OBJECT"  
      RELIABILITY_DATA MODEL_GLM 
       GAMMA 0. 
       LAMBDA lambda 
       MU mu; 
 EFFECT connected  
        LABEL "%OBJECT is linked to a source"; 
 INTERACTION 
   IF WORKING AND function = 'source' 
   THEN connected; 
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Source target
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target

n1

Source



 
 

     

 

 
CLASS source KIND_OF node ; 
 CONSTANT function DEFAULT 'source'; 
 
CLASS target KIND_OF node ; 
 CONSTANT function DEFAULT 'target'; 
 
CLASS link ; 
 INTERFACE extremity KIND node CARDINAL 2 ; 
 FAILURE interruption LABEL "The link %OBJECT is 
        broken" 
      RELIABILITY_DATA MODEL_GLM 
       GAMMA 0. 
       LAMBDA 1e-5 
       MU 0.1 ; 
 INTERACTION 
   IF WORKING AND  
    (FOR_ANY x AN extremity WE_HAVE WORKING(x)) 
     AND IT_EXISTS x AN extremity SUCH_THAT 
         connected OF x  
   THEN FOR_ALL z AN extremity DO connected(z); 

5.4 Fault tree generation 

Once the Figaro model is available (library + objects 
automatically deduced from the Modelica model), the simple 
invocation of the Figaro processor produces an XML file 
containing a fault tree, which can be represented graphically 
as in Fig. 6. 

  

Fig. 6. Fault tree generated from the telecom network. 

5.5 Fault tree analysis 

The fault tree produced by the Figaro processor can then be 
transferred (maybe via an ad hoc translator) to any fault tree 
processing tool. With such a tool, different kinds of results 
can be obtained: minimal cut sets, the probability of the top 
event, importance factors of components… 

This is not available in the prototype tools, but one can 
imagine that some of the results of the fault tree analysis can 
be used in conjunction with the Modelica models. For 
example, a minimal cut set could be transformed into a script 
that could be run on the Modelica model, in order to "check" 
that this combination of failures indeed leads to a failure of 
the system. 

6. EXAMPLE 2 (HYBRID): HEATED TANK 

6.1 History of this benchmark 

The heated-tank problem was first introduced in Aldemir 
(1987), and since then has been serving as a benchmark for 
dynamic reliability. It has been solved with different 
approaches including Marseguerra et. al. (1995), Tombuyses 
et. al. (1996), Lair et. al. (2010), Zhang et. al. (2009), Zhang 
et. al. (2013). This problem is not trivial because it contains 
two coupled continuous variables (fluid level and 
temperature), and the components failure rates heavily 
depend on the temperature. This example has the advantage 
of being defined with much precision and being sufficiently 
small to enable exhaustive comparison of different solving 
approaches. 

6.2 System short description 

Due to space limitations, we limit the description to its main 
features. Numerical parameters can be found in Zhang et al. 
(2013) and several other references. 

The main component of the system is a tank containing a 
fluid. Two pumps (components 1 and 2) can add fluid in the 
tank. A valve (component 3) can remove fluid from the tank. 
The pumps and the valve can each be either ON or OFF; they 
are controlled by level sensors. The pumps and the valve can 
present failures, leading them to be either STUCK_ON or 
STUCK_OFF. The times to apparitions of these failures are 
governed by the integration of the failure rates, according to 
the following formula, where T is the (random) time to 
failure: 

0

Pr(T ) 1 exp( ( (u)) )
t

t duλ θ≤ = − −∫  

The failure rates λ(θ) vary with the temperature of the fluid. 
Lastly, a heating device heats the fluid in the tank. 

The components are controlled according to two laws: 

⇒ if the fluid level h(t) drops below 6m, the components 1, 
2, 3 are put respectively in state ON, ON, OFF 
(assuming they are not STUCK_ON or STUCK_OFF) 



 
 

     

 

⇒ if the fluid level h(t) rises above 8m, the components 1, 
2, 3 are put respectively in state OFF, OFF, ON 
(assuming they are not STUCK_ON or STUCK_OFF) 

 

 

Fig. 7. The "heated tank" system. 

 

Fig. 8. States and transitions of the components. 

The two continuous-variables are the fluid level h(t) and the 
fluid temperature θ(t). They satisfy the following differential 
equations: 

dh dt⁄ = �v� + v
 − v�
F/A 
h dθ dt⁄ = �v� + v

F�T� − θ�/A + Q/A 
with 
v� = �0 if c is OFF or STUCK_OFF

1 if c is ON or STUCK_ON , c ∈ ,1,2,3/ 
F, T�, A, and Q constants 

We consider the system to be failed if it reaches either of the 
following situations: drought (h<4m), overflow (h>10m) or 
boiling (θ>100°C). We are interested in the probabilities of 
these events occurring before time t. 

6.3 Model in Modelica 

We implemented this system with two different modelling 
methods: state-graphs, using a modified version of the 
Stategraph2 library (Otter et al. 2009) and state-machines 
(this is the most elegant, and it is detailed below). Both use 
the mechanisms given in Bouissou et al. (2014) for the 
generation of random events and the Monte Carlo simulation. 
Thanks to the features of Modelica, these mechanisms can be 
cast in a library and hidden from the user who builds models. 

In the following, we explain all what the user has to input to 
solve this problem, supposing that he has this library at hand.   

The top level of the system model is shown in figure 9. The 
Tank only contains the two differential equations and their 
initial conditions. The Control contains a state machine 

(purely deterministic) with 3 states: High, Intermediate, Low. 
The transitions between states are triggered by comparisons 
between the current fluid level and the various thresholds. 
According to the active state, commands are sent to pumps 
and the valve. 

The most interesting components are Pump_1, Pump_2 and 
Valve, since they are the only components with a random 
behaviour. 

 

Fig. 9. Structure of the Modelica model. 

They contain the state-machine depicted in Fig.10. 
Deterministic continuous-time state-machines in Modelica 
were already presented in Elmqvist et al. (2014). We used 
them in order to implement stochastic transitions in 
accordance with the principles explained in Bouissou et al. 
(2014). 

 

Fig. 10. Continuous-time state-machine model for the two pumps 
and the valve. 

This state-machine contains both deterministic transitions 
(linked to control laws) and stochastic transitions. Moreover, 
the failure rates λ(θ) vary with the temperature calculated in 
the tank. 

This whole model cannot give us directly the desired 
cumulated probabilities of failures. One simulation can only 
give us one possible trajectory, determined by the random 
numbers generated for this simulation. This is why we do 
Monte-Carlo simulations: we launch a large number of 
simulations with different seeds for the pseudo random 
number generator. The mean of the results then converges 
towards the sought result. 



 
 

     

 

6.4 Results and comparison with other articles 

As stated before, this benchmark has been studied in many 
different ways in the past. We will here compare our results 
with the ones in Zhang et al. (2009) and the ones in Zhang et 
al. (2013). In Zhang et al. (2009), the authors use an 
analytical solution to solve differential equations. This way, 
they manage to simulate 105 histories in 1min37s. Compared 
to them, we do not seem to be efficient with 1hour. However, 
contrary to them, we do not use an analytical solution, which 
would require first mathematically studying the system. We 
only use the original raw equations and let Dymola do the 
numerical integration. This explains the difference in speed. 

 

Fig. 11. Cumulated probabilities of failures. Comparison between 
our results (105 histories) and PDMP from Zhang et al. (2009) (107 
histories, dotted). Blue: overflow; Green: boiling; Red: drought. 

In fact, in Zhang et al. (2013), the authors try this time to use 
a more general method to solve this benchmark with 
Matlab/Simulink. In this case, simulating 105 histories takes 
them about 23hours (versus 1hour for us). This difference is 
in part due to them having to use a fixed-step integration 
algorithm. With our method, explained in Bouissou et al. 
(2014), the integration uses a variable-step algorithm and is 
thus more efficient.  

6. CONCLUSION 

Thanks to the MODRIO project, a bridge was built between 
the design and dependability analysis workflows for complex 
systems. Starting from a Modelica model, it is now possible 
to generate a fault tree or a discrete stochastic simulation 
model thanks to an automatic transfer of information towards 
mature dependability tools based on the Figaro modelling 
language. For hybrid systems, we have developed another 
approach, based on the introduction of stochastic behaviour 
in the Modelica model itself. This approach compares well to 
the state of the art in terms of modelling effort and simulation 
time.  

The two modelling methods exemplified here on well-known 
use cases could easily be applied to much larger and more 
complex systems, saving a lot of modelling time, while using 
state of the art dependability analysis techniques.   
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