
www.acsysteme.com/fr/lmcs

Organisé par : En partenariat avec :

LMCS 2015
Logiciels pour la modélisation

et le calcul scientifique
mardi 24 novembre 2015, site de l’Inria à Rennes (35), France

Conférencier : Marc BUISSOU

Organisme : EDF

Modelica et sûreté de fonctionnement

Contexte du projet

Abstract: Modelica is a modeling language which was created in order to ease the description of multi
physics systems thanks to an object oriented approach. Modelica models usually represent only the
nominal functioning of systems and are used to simulate them for design purposes. This article
proposes various ways to derive dependability models from such Modelica models, as automatically
as possible. Depending on the tightness of coupling between the continuous processes and discrete
events such as failures and repairs, the methods proposed here range from the addition of stochastic
behavior in the Modelica model itself to the association of the system structure to a library written in
the Figaro reliability modeling language. Such an association allows the use of the Figaro workbench
tools, specially designed for dependability analysis; it is then possible to generate a fault tree, or to
create automatically a discrete stochastic simulation model. All these possibilities are exemplified
through two classical use cases: a telecommunication network, and a "heated tank" system.

Keywords: Modelica, reliability analysis, hybrid stochastic system, fault tree generation.

From Modelica models to dependability analysis

M. Bouissou*, **. X. de Bossoreille***

*Electricité de France, R&D, Clamart, 92141
France (marc.bouissou@edf.fr)

**Ecole Centrale Paris, Chatenay Malabry, 92295
France (marc.bouissou@ecp.fr)

*** DLR, Institute of System Dynamics and Control, D-82234 Wessling,
Germany (xavier.bossoreille@dlr.de)

Abstract: Modelica is a modeling language which was created in order to ease the description of multi
physics systems thanks to an object oriented approach. Modelica models usually represent only the
nominal functioning of systems and are used to simulate them for design purposes. This article proposes
various ways to derive dependability models from such Modelica models, as automatically as possible.
Depending on the tightness of coupling between the continuous processes and discrete events such as
failures and repairs, the methods proposed here range from the addition of stochastic behavior in the
Modelica model itself to the association of the system structure to a library written in the Figaro
reliability modeling language. Such an association allows the use of the Figaro workbench tools,
specially designed for dependability analysis; it is then possible to generate a fault tree, or to create
automatically a discrete stochastic simulation model. All these possibilities are exemplified through two
classical use cases: a telecommunication network, and a "heated tank" system.

Keywords: Modelica, reliability analysis, hybrid stochastic system, fault tree generation.

1. INTRODUCTION

The purpose of reliability, and more generally, of
dependability studies is to calculate probabilities of
undesirable events such as the failure of the mission of a
system, or to estimate the probability distribution of some
performances of the system: total production on a given time
interval, maintenance cost, number of repairs etc. Usually,
dependability studies are performed with dedicated methods
and tools, based on discrete (and often even Boolean) models
of systems: fault trees, Markov chains, Petri nets, BDMP
(Boolean logic Driven Markov Processes) etc. EDF
(Electricité de France) has a lot of experience about reliability
modelling, and designed the Figaro modelling language in
1990. This language generalizes all the above cited models,
and allows casting knowledge on categories of systems in
libraries. It is the basis of KB3 which is the reference tool
used for building fault trees and dynamic models for
probabilistic safety analyses of nuclear power plants and all
other reliability analyses at EDF.

Unfortunately, in some situations, a purely discrete
representation of a system cannot be a good enough
approximation: this is the case of hybrid systems, having both
discrete and continuous parts, with strong interactions
between them. Reliability analysts call the study of such
systems "dynamic reliability". For such systems, the Figaro
language can only provide step function approximations for
representing the evolution of continuous variables: cf.

Bouissou (2007). This is why we looked for better solutions
for hybrid systems, and investigated the use of Modelica. In
Bouissou et al. (2014) we showed that it is possible to add
stochastic behaviour due to failures and repairs of
components to a deterministic hybrid system described in
Modelica. This paper explains how one can perform Monte
Carlo simulations on such models, with a smart algorithm
that minimizes the number of random numbers that must be
generated. Moreover, this algorithm can be implemented
using the standard Modelica solvers, which is a major
advantage. We also looked for solutions to perform more
classical dependability analyses (starting from a Modelica
model) for systems for which the hybrid behaviour can be
abstracted into a discrete behaviour, or even a Boolean model
such as a fault tree. Our conclusion was that using Modelica
itself would be extremely difficult because it would imply the
cohabitation of two models in one: a detailed, physical
simulation model for the nominal functioning and a more
abstract model suited for dependability analyses. We finally
concluded that a much easier and more efficient solution
would be to generate automatically a Figaro model from the
Modelica model, then use the mature Figaro tools for
performing the needed transformations (like the generation of
a fault tree) and calculations (of availability, reliability etc.).

The main contribution of the present paper is to describe a
method for doing this. This method is already partially (a few
manual inputs are still necessary) implemented in two
prototypes based respectively on the tools Dymola and

OpenModelica, associated in both cases to the tools of the
Figaro workbench.

An auxiliary contribution of the present paper is the
application of the method described in Bouissou et al. (2014)
to a more complicated use case, which has served as a
benchmark for numerous other methods. This application
shows two things: the model is simple and “natural” with the
proposed approach and the performances of the simulation
are better than those of a recently published paper.

To summarize, this paper illustrates by examples some of the
results related to dependability analysis which were obtained
in the MODRIO European project. It is organized as follows:
the largest part of the article (sections 2 to 4) presents the
connection that can be established between detailed
simulation models in Modelica, and more abstract models
written in Figaro, in order to generate fault trees or to
perform probabilistic evaluations based on discrete models.
Section 5 is an example of such a connection (for a telecom
network), and Section 6 compares the method described in
Bouissou et al. (2014) to other techniques on a well-known
benchmark.

2. THE FIGARO LANGUAGE AND TOOLS

Given the existence of a large community of Modelica users,
we will assume that this language is already known by the
reader. The dedicated web site Modelica.org provides
thousands of free resources including articles, component
libraries, tutorials, forums, links to open source and
commercial tools, and of course the detailed specifications of
the Modelica language. The Figaro language is more specific,
this is why we give its main characteristics here.

The Figaro language, created in 1990, is a domain specific
object oriented modelling language dedicated to
dependability with the following objectives, commented and
exemplified in Bouissou et al. (1991):

• provide an appropriate formalism for developing
libraries (with generic descriptions of components);

• be more general than all the usual reliability models.
For example, in the above cited paper, it is shown
that reliability block diagrams and Petri nets can be
represented in Figaro;

• find the best trade-off between modelling power (or
generality) and possibilities for the processing of
models. In particular, models with differential
equations have been explicitly excluded from the
scope of Figaro;

• be as legible as possible (see example in section 5);
• be easily associated with graphic representations. In

(Bouissou et al. 1991) one can see how Petri nets,
reliability block diagrams and also an electrical
system could be input with their usual graphical
representations in the very first version of the KB3
tool, based on Figaro descriptions.

The Figaro language has two levels, called order 1 and
order 0. At order 1, its syntax allows to define generic
constructions contained in reusable classes, while at order 0 it
can only describe a particular system by means of objects.

A class consists of two parts:

⇒ a purely static and declarative part :

• name of the class and of the class(es) whose
characteristics it inherits;

• interfaces (classes with which the concerned class will
interact, possibly with constraints on the number of
objects authorised for each interface);

• constant characteristics;
• state variables, with their initial values.

⇒ a dynamic part : the occurrence and interaction rules
describing the behaviour of the class. The occurrence
rules describe elementary events with the conditions
governing how they are triggered and the associated
probability distributions. The purpose of the interaction
rules is to propagate the effects that are immediate and
certain consequences of an event in the system. These
rules often make use of quantifiers in order to be valid
irrespective of the content of sets of objects defined by
the interfaces; simple examples of the use of quantifiers
are given in section 5.3 (cf. class "link").

The tool KB3 was designed to offer a generic graphical user
interface for working with Figaro models, that can be tailored
to each Figaro library. In KB3, a Figaro class can be
associated equally well with an icon as with a link. This
means that a Figaro link can be a complex object with rules,
and not just a means to declare constraints (equality,
conservation of flow) on state variables. This is an important
difference between Figaro and Modelica.

Fig. 1. The Figaro workbench overall architecture.

Once the architecture of a system has been graphically input
in KB3, the man-machine interface translates it into a list of
objects described in Figaro language. The set "library + list of
parameterized objects" is a complete model in order 1 Figaro
language for a given system. This model is concise, but it
would be very complex to use it directly, and not all the
recommended checks could be run on it. For this reason,
prior to any processing, this model is fully instantiated in
order 0 Figaro, a very simple sub-language of order 1 Figaro
which is suitable for description of the behaviour of a
particular system, and which enables all consistency checks
to be run and effective processing to be carried out. A formal
definition of the semantics of the order 0 Figaro language is
given in Bouissou and Houdebine (2002).

The Figaro workbench is a set of tools designed to help a user
define Figaro models, then process them in order to perform
dependability analyses. Fig. 1 gives an overview of the main
tools of the workbench, and shows how they are connected.

3. ENGINEERING WORKFLOWS

At EDF there are traditionally two parallel workflows for
design and for dependability analyses, in different
departments. In the first workflow, designers build Modelica
models and simulate them in order to optimize the normal
operation of systems; in the second one, reliability engineers
estimate non-functional performances such as reliability,
availability and maintainability of the system.

The design information, needed to perform dependability
studies, is "manually" transferred from the first to the second
workflow. With the approach developed in the MODRIO
project, it is now possible to transfer automatically the system
structure from the first to the second workflow. This is
illustrated on Fig. 2, which emphasizes fault tree based
dependability studies; of course other studies of Fig. 1 are also
possible.

Fig. 2. The design and dependability analyses workflows at EDF.

The benefits of this automatic transfer are:

• assurance of consistency between the models used in the
two workflows;

• time saving, making it possible to get an immediate
feedback from dependability performances during the
design process;

• the workflows remain largely independent; in particular,
the Modelica and Figaro libraries can still be developed
independently. Even the tools used in the two workflows
can be maintained independently, except for their
interface with the bridge created between them.

4. FROM MODELICA TO FIGARO

Fig. 3 explains the principles used to switch from a Modelica
model to a Figaro model. Starting from a pure Modelica
model designed for physical simulation, one can obtain a
Figaro model by extracting objects (maybe not all of them,
see example 1 below) and their inter-relations from the model
and associating them to a well suited library in Figaro.

The Figaro library contains the dependability models,
including in particular the failures and repairs of components,
with the associated reliability data (default values of failure
rates and mean repair times).

There are two possible levels of automation in the process.

The first level (the one that is currently implemented in the
two prototypes) is library independent, but it requires a few
inputs from the user. In fact the binding of objects between
the Modelica and the Figaro model must be "loose", because:

• the structure of the Figaro model may be quite different
from the structure of the Modelica model. This is due to
the fact that different kinds of abstraction are used when
going from a real system to a functional, simulation
model on the one hand, and to a dysfunctional model on
the other hand;

• different Figaro libraries can be bound to a single
Modelica model; this gives the possibility to do various
kinds of studies, all from a single initial model.

Fig. 3. From Modelica to Figaro.

The binding is specified by associating a Figaro class name to
each object of the Modelica model and by declaring the inter-
relations between objects, directly in Figaro syntax. This
second kind of information is necessary because, as
mentioned earlier, the ways connections between components
are declared are quite different in Modelica and Figaro. This
is exemplified in the telecom example in the next section.

In order to generate Figaro 0 models from a Modelica tool,
all the parameters and information needed by Figaro and that
do not exist in Modelica must be integrated in Modelica in
such a way that they do not affect in any way the original
simulation model (without Figaro). That is why they must be
added as annotations or as string parameters. We decided to
use parameters, because they can be inherited, and this is
very important in our approach. Moreover, parameters are
part of the core of the Modelica language, which means that
it will be possible to use the same models with all Modelica
tools.

The second level of automation consists in filling
automatically the information on connections in the strings
added to the Modelica model. This is library dependent, and

we will explain how it can be done on the example given in
the next section.

5. EXAMPLE 1 (DISCRETE): TELECOM NETWORK

This example will probably seem a bit artificial: this is due to
the fact that we started from the abstract representation
(explained in section 5.1) to derive a physical model (section
5.2) while on real systems it is the other way round! But we
chose that example because it is simple enough to be
explained in an article and yet it poses difficult problems. We
have reported in a MODRIO document (Bouissou 2014) how
the same principles work perfectly on a real thermohydraulic
system of a nuclear power plant with libraries encompassing
thousands of lines in Modelica, and hundreds of lines in
Figaro.

5.1 Telecommunication network

In a telecommunication network such as the one represented
in Fig. 4, the classical so-called S-T connectivity problem
consists in calculating the probability that a given target (a
blue node) is connected to at least one source of information
(a green node). Here, we make the simplest possible
assumptions on the failure and repair processes of
components: failure and repair times are all exponentially
distributed, and components are all independent. Nodes and
links can both fail. Despite the apparent simplicity of this
example, it poses real challenges for generating fault trees:
there are loops in the topology of the system, which, without
a proper treatment will lead to invalid fault trees (containing
loops). Moreover, the number of links connected to a node is
not known in advance and thus the reliability model must be
written in a way which is independent from the number of
connections. To the best of our knowledge, these two
problems are solved only by the tools based on Figaro.

Fig. 4. Telecom network.

5.2 Representation as a hybrid system

A possible analog model of such a network in Modelica is an
electrical circuit (built using the Modelica.Electrical.Analog
library) where links are represented by resistors and source
nodes by generators; the other nodes are represented by pins
(components without behaviour that just serve as "hubs" for
connections). Since we want to detect the propagation of the
alternative signal generated by the source, three auxiliary
resistors of 1 Ohm are needed. They do not have Figaro
string parameters; hence they disappear completely in the
conversion from the Modelica + Figaro strings model to the
pure Figaro model. This shows an example of management of
structural differences between the Modelica and the Figaro
model.

Fig. 5. Analog model of a telecom network: electrical circuit.

Each link is represented by a resistor. Its normal behaviour is
represented by a value of 10 Ohms, whereas its failure is
represented by a value of 10,000 Ohms. It is also possible to
simulate a failure of a node by setting the corresponding
auxiliary resistor to 0.

If only the first level of automation for going from the
Modelica to the Figaro model is used, the user has to input
manually the following information in the five resistors
considered as links: "INTERFACE extremity x y;" where x
and y are the nodes connected to the two ports of the link.
This minimal information can be completed, if needed, by
instructions declaring values for the failure or repair rates that
will override the default values defined in the Figaro library.

In order to leverage automation to level 2, one would have to
write a little algorithm in Modelica that would do the
following:

For X in objects of the model
 If X of class Link
 Write in X.figaro_string : "INTERFACE ",

name of object connected to X.positive_pin,
name of object connected to X.negative_pin, ";"

 End If
End for

5.3 The Figaro knowledge base for telecom networks

Here is in extenso the library needed to generate a fault tree
for any topology of telecom network that could be deduced
from a Modelica simulation model such as the one of Fig. 4.
Figaro keywords are written in uppercase.

CLASS node;
 CONSTANT
 function DOMAIN 'source' 'target' 'intermediate'
 DEFAULT 'intermediate';
 lambda DOMAIN REAL DEFAULT 1e-5;
 mu DOMAIN REAL DEFAULT 0.1;
 FAILURE fail LABEL "Failure of %OBJECT"
 RELIABILITY_DATA MODEL_GLM
 GAMMA 0.
 LAMBDA lambda
 MU mu;
 EFFECT connected
 LABEL "%OBJECT is linked to a source";
 INTERACTION
 IF WORKING AND function = 'source'
 THEN connected;

n2

n1

Source target

n2

target

n1

Source

CLASS source KIND_OF node ;
 CONSTANT function DEFAULT 'source';

CLASS target KIND_OF node ;
 CONSTANT function DEFAULT 'target';

CLASS link ;
 INTERFACE extremity KIND node CARDINAL 2 ;
 FAILURE interruption LABEL "The link %OBJECT is
 broken"
 RELIABILITY_DATA MODEL_GLM
 GAMMA 0.
 LAMBDA 1e-5
 MU 0.1 ;
 INTERACTION
 IF WORKING AND
 (FOR_ANY x AN extremity WE_HAVE WORKING(x))
 AND IT_EXISTS x AN extremity SUCH_THAT
 connected OF x
 THEN FOR_ALL z AN extremity DO connected(z);

5.4 Fault tree generation

Once the Figaro model is available (library + objects
automatically deduced from the Modelica model), the simple
invocation of the Figaro processor produces an XML file
containing a fault tree, which can be represented graphically
as in Fig. 6.

Fig. 6. Fault tree generated from the telecom network.

5.5 Fault tree analysis

The fault tree produced by the Figaro processor can then be
transferred (maybe via an ad hoc translator) to any fault tree
processing tool. With such a tool, different kinds of results
can be obtained: minimal cut sets, the probability of the top
event, importance factors of components…

This is not available in the prototype tools, but one can
imagine that some of the results of the fault tree analysis can
be used in conjunction with the Modelica models. For
example, a minimal cut set could be transformed into a script
that could be run on the Modelica model, in order to "check"
that this combination of failures indeed leads to a failure of
the system.

6. EXAMPLE 2 (HYBRID): HEATED TANK

6.1 History of this benchmark

The heated-tank problem was first introduced in Aldemir
(1987), and since then has been serving as a benchmark for
dynamic reliability. It has been solved with different
approaches including Marseguerra et. al. (1995), Tombuyses
et. al. (1996), Lair et. al. (2010), Zhang et. al. (2009), Zhang
et. al. (2013). This problem is not trivial because it contains
two coupled continuous variables (fluid level and
temperature), and the components failure rates heavily
depend on the temperature. This example has the advantage
of being defined with much precision and being sufficiently
small to enable exhaustive comparison of different solving
approaches.

6.2 System short description

Due to space limitations, we limit the description to its main
features. Numerical parameters can be found in Zhang et al.
(2013) and several other references.

The main component of the system is a tank containing a
fluid. Two pumps (components 1 and 2) can add fluid in the
tank. A valve (component 3) can remove fluid from the tank.
The pumps and the valve can each be either ON or OFF; they
are controlled by level sensors. The pumps and the valve can
present failures, leading them to be either STUCK_ON or
STUCK_OFF. The times to apparitions of these failures are
governed by the integration of the failure rates, according to
the following formula, where T is the (random) time to
failure:

0

Pr(T) 1 exp(((u)))
t

t duλ θ≤ = − −∫

The failure rates λ(θ) vary with the temperature of the fluid.
Lastly, a heating device heats the fluid in the tank.

The components are controlled according to two laws:

⇒ if the fluid level h(t) drops below 6m, the components 1,
2, 3 are put respectively in state ON, ON, OFF
(assuming they are not STUCK_ON or STUCK_OFF)

⇒ if the fluid level h(t) rises above 8m, the components 1,
2, 3 are put respectively in state OFF, OFF, ON
(assuming they are not STUCK_ON or STUCK_OFF)

Fig. 7. The "heated tank" system.

Fig. 8. States and transitions of the components.

The two continuous-variables are the fluid level h(t) and the
fluid temperature θ(t). They satisfy the following differential
equations:

dh dt⁄ = �v� + v
 − v�
F/A
h dθ dt⁄ = �v� + v

F�T� − θ�/A + Q/A
with
v� = �0 if c is OFF or STUCK_OFF

1 if c is ON or STUCK_ON , c ∈ ,1,2,3/
F, T�, A, and Q constants

We consider the system to be failed if it reaches either of the
following situations: drought (h<4m), overflow (h>10m) or
boiling (θ>100°C). We are interested in the probabilities of
these events occurring before time t.

6.3 Model in Modelica

We implemented this system with two different modelling
methods: state-graphs, using a modified version of the
Stategraph2 library (Otter et al. 2009) and state-machines
(this is the most elegant, and it is detailed below). Both use
the mechanisms given in Bouissou et al. (2014) for the
generation of random events and the Monte Carlo simulation.
Thanks to the features of Modelica, these mechanisms can be
cast in a library and hidden from the user who builds models.

In the following, we explain all what the user has to input to
solve this problem, supposing that he has this library at hand.

The top level of the system model is shown in figure 9. The
Tank only contains the two differential equations and their
initial conditions. The Control contains a state machine

(purely deterministic) with 3 states: High, Intermediate, Low.
The transitions between states are triggered by comparisons
between the current fluid level and the various thresholds.
According to the active state, commands are sent to pumps
and the valve.

The most interesting components are Pump_1, Pump_2 and
Valve, since they are the only components with a random
behaviour.

Fig. 9. Structure of the Modelica model.

They contain the state-machine depicted in Fig.10.
Deterministic continuous-time state-machines in Modelica
were already presented in Elmqvist et al. (2014). We used
them in order to implement stochastic transitions in
accordance with the principles explained in Bouissou et al.
(2014).

Fig. 10. Continuous-time state-machine model for the two pumps
and the valve.

This state-machine contains both deterministic transitions
(linked to control laws) and stochastic transitions. Moreover,
the failure rates λ(θ) vary with the temperature calculated in
the tank.

This whole model cannot give us directly the desired
cumulated probabilities of failures. One simulation can only
give us one possible trajectory, determined by the random
numbers generated for this simulation. This is why we do
Monte-Carlo simulations: we launch a large number of
simulations with different seeds for the pseudo random
number generator. The mean of the results then converges
towards the sought result.

6.4 Results and comparison with other articles

As stated before, this benchmark has been studied in many
different ways in the past. We will here compare our results
with the ones in Zhang et al. (2009) and the ones in Zhang et
al. (2013). In Zhang et al. (2009), the authors use an
analytical solution to solve differential equations. This way,
they manage to simulate 105 histories in 1min37s. Compared
to them, we do not seem to be efficient with 1hour. However,
contrary to them, we do not use an analytical solution, which
would require first mathematically studying the system. We
only use the original raw equations and let Dymola do the
numerical integration. This explains the difference in speed.

Fig. 11. Cumulated probabilities of failures. Comparison between
our results (105 histories) and PDMP from Zhang et al. (2009) (107
histories, dotted). Blue: overflow; Green: boiling; Red: drought.

In fact, in Zhang et al. (2013), the authors try this time to use
a more general method to solve this benchmark with
Matlab/Simulink. In this case, simulating 105 histories takes
them about 23hours (versus 1hour for us). This difference is
in part due to them having to use a fixed-step integration
algorithm. With our method, explained in Bouissou et al.
(2014), the integration uses a variable-step algorithm and is
thus more efficient.

6. CONCLUSION

Thanks to the MODRIO project, a bridge was built between
the design and dependability analysis workflows for complex
systems. Starting from a Modelica model, it is now possible
to generate a fault tree or a discrete stochastic simulation
model thanks to an automatic transfer of information towards
mature dependability tools based on the Figaro modelling
language. For hybrid systems, we have developed another
approach, based on the introduction of stochastic behaviour
in the Modelica model itself. This approach compares well to
the state of the art in terms of modelling effort and simulation
time.

The two modelling methods exemplified here on well-known
use cases could easily be applied to much larger and more
complex systems, saving a lot of modelling time, while using
state of the art dependability analysis techniques.

AKNOWLEDGEMENTS

This paper is based on research performed within the ITEA2
project MODRIO. Partial financial support of the French
DGE for this development is highly appreciated.

REFERENCES

Aldemir T. (1987). Computer-Assisted Markov Failure
Modeling of Process Control Systems. IEEE Trans. on
Reliability, volume 36(4), pages 133-144.

Bouissou M., Bouhadana H., Bannelier M., Villatte N.
(1991). Knowledge modelling and reliability processing:
presentation of the FIGARO language and associated
tools. Safecomp'91, Trondheim (Norway).

Bouissou M., Houdebine (2002). Inconsistency detection in
KB3 models. ESREL 2002, Lyon (France), March.

Bouissou M. (2007). Comparison of two Monte Carlo
schemes for simulating Piecewise Deterministic Markov
Processes. MMR07, Glasgow, (UK), July 2007.

Bouissou M. (2014). Specification of Modelica
extensions and interfaces for Bayesian networks and
Fault trees. Deliverable D.2.2.1 of the MODRIO Artemis
project.

Bouissou M., Elqmvist H., Otter M., and Benveniste A.
(2014). Efficient Monte Carlo simulation of stochastic
hybrid systems. Modelica’2014 Conference, Lund,
Sweden, March 10-12.

Elmqvist H., Mattsson S.E. and Otter M. (2014). Modelica
extensions for multi-mode DAE systems. Modelica’2014
Conference, Lund, Sweden, March 10-12.

Lair W, Ziani R., Mercier S. and Roussignol M. (2010).
Piecewise Deterministic Markov Processes and
Deterministic quantification with a finite volume
algorithm: a study case. Congrès de Maîtrise des Risques
et de Sûreté de Fonctionnement, La Rochelle, October
05-07.

Marseguerra M., Zio E. (1995). The cell-to-cell boundary
method in Monte Carlo based dynamic PSA. Reliability
Engineering and System Safety, volume 45, pages 199-
204.

Otter M., Malmheden M., Elmqvist H., Mattsson S.E.,
Johnsson C. (2009). A New Formalism for Modeling of
Reactive and Hybrid Systems. Modelica'2009
Conference, Como, Italy, Sept. 20-22, 2009.

Tombuyses B., Aldemir T. (1996). Continuous cell-to-cell
mapping and dynamic PSA. Proceedings of ICONE 4
conference, pages 431-438.

Zhang H., Dufour F., Dutuit Y. and Gonzalez, K. (2009).
Piecewise deterministic Markov processes and dynamic
reliability. Proceedings of the Institution of Mechanical
Engineers, Part O: Journal of Risk and Reliability,
volume 222(4), pages 545–551.

Zhang H., Saporta B., Dufour F. and Deleuze G. (2013).
Dynamic reliability by using Simulink and Stateflow.
Chemical Engineering Transactions, volume 33, pages
529-534.

KB3 workbench information and download
http://rdsoft.edf.fr/

Modelica language and tools: http://modelica.org

0

0.1

0.2

0.3

0.4

0.5

0.6

0 500 1000

p
ro

b
a

b
il

it
ie

s

Time (hours)

