

Utilisation de modèles hydrauliques-métier dans des plates-formes et application aux incertitudes

N.Goutal — E. Demay

EDF R&D

Utilisation de modèles hydrauliques-métier dans des plate-formes et application aux incertitudes

- 1. Présentation de l'outil métier : Système Mascaret
- 2. Prise en compte des incertitudes en hydraulique : Pourquoi et comment ?
- 3. Intégration de l'outil métier dans Scilab
- 4. Cas d'application
- 5. Conclusions

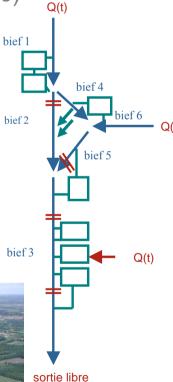
Collaboration LNHE-STEP-MRI

(1)

Présentation de l'outil métier : le système Mascaret

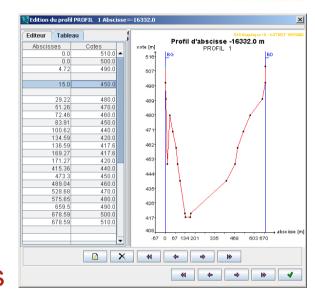
Le système Mascaret

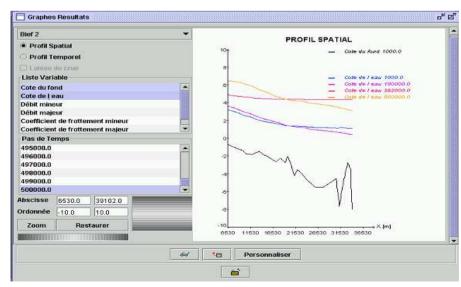
Ensemble d'outils dédiés à la modélisation monodimensionnelle des écoulements à surface libre en rivière


- Simulation des écoulements
- Transport de traceurs passifs
- Transport de sédiments cohésifs
- ☼ Développé depuis plus de 20 ans

Hydraulique : fonctionnalités

- 3 noyaux de calcul basés sur la résolution des équations de Saint-Venant (EDP non linéaires – solutions discontinues)
 - Fluvial permanent, non permanent (différences finies –1970)
 - Transcritique non permanent (schémas volumes finis explicite et implicite)
 - Réseau maillé et ramifié Système de casiers
 - Conditions limites:
 - Cote ou débit imposés Loi de tarage Sortie libre
 - Gestion du changement de régime en entrée de domaine
 - Singularités (seuils, déversoirs,...)
 - Calage automatique (noyau fluvial permanent)

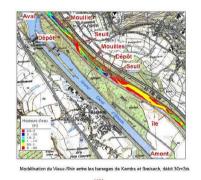

L'interface graphique Fudaa-Mascaret


→ Co-développée avec le CETMEF en Java

Permet la construction des fichiers de données pour Mascaret :

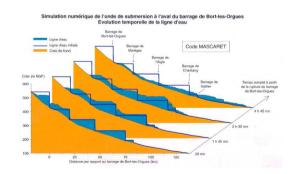
- → le traitement des données de bathymétrie
- → la construction du réseau hydraulique
- → Ligne d'eau initiale Conditions aux limites
- → Paramétres de calcul

Traitement des résultats



Exemple d'applications

→ Propagation de crues et modélisation des champs latéraux d'inondation



→ Régulation - Calcul d'intumescences

← Étiage

→ Scénario de crues extrêmes pour le calage des plates-formes des centrales nucléaires

→ Onde de submersion résultant de rupture de barrage (PPI)

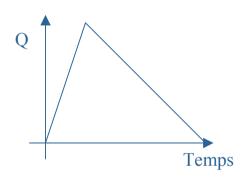
2

Prise en compte des incertitudes en hydraulique : pourquoi et comment ?

Prise en compte des incertitudes dans la modélisation hydraulique : Pourquoi ?

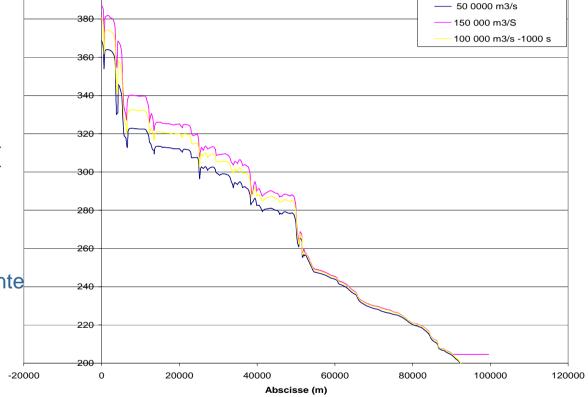
- Crues extrêmes : crue millénnale
 - Débit fourni par analyse hydrologique
 - Coefficient de frottement : non calé pour ces débits extrêmes
 Pas de crues de référence
- Rupture de barrages en remblai par brèche ou érosion interne :
 Détermination des zones inondées
 - Forte incertitude sur l'hydrogramme de vidange de la retenue pour les ouvrages en enrochements :
 - Formules déterministes basées sur une analyse statistique
 - Outils déterministes (Renard–Erosif) ne représentent pas la complexité du phénomène physique

Formules	Hagen	Mac- donald	Costa	Evans	Froelich	Molinaro
Débit pointe (m3/s)	275 000	45 000	47 000	48 000	105 000	221 000


Code Renard : 120 000 m3/s

Influence de l'hydrogramme de brèche

Comparaison des côtes maximales



• Le volume de la retenue est

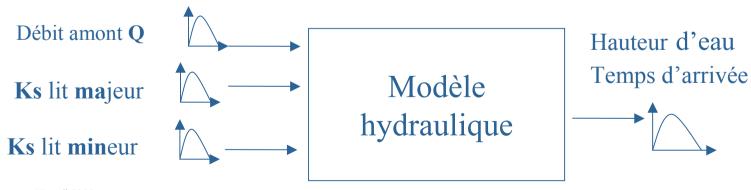
conservée

Propagation des incertitudes au travers des modèles hydrauliques : comment ?

ETAPES D'UNE ETUDE D'INCERTITUDE :

- ✓ Analyser les sources d'incertitudes du processus physique
- ✓ Quantifier les sources d'incertitudes (Bornes de variation Min-Max Définir les lois des variables d'entrée)
- ✓ Etude de sensibilité globale
- ✓ Propager les incertitudes par une méthode de type Monte-Carlo
- ✓ Analyse des variables calculées

Méthodologie développée par MRI



Propagation des incertitudes au travers des modèles hydrauliques : comment ?

- Mise au point du modèle hydraulique (géométrie réseau –
 CL Cl paramètres numériques calage)
- Tirage aléatoire des données d'entrée incertaines selon leur lois de probabilités :

Pour chaque jeu de données d'entrée :

- Réalisation d'un calcul hydraulique avec un nouveau jeu de données
- Analyse statistique des variables de sortie

3

Intégration d'outils métier (hydraulique) dans des plates-formes de simulation

Intégration de l'outil métier « hydraulique » dans des plates-formes de simulation

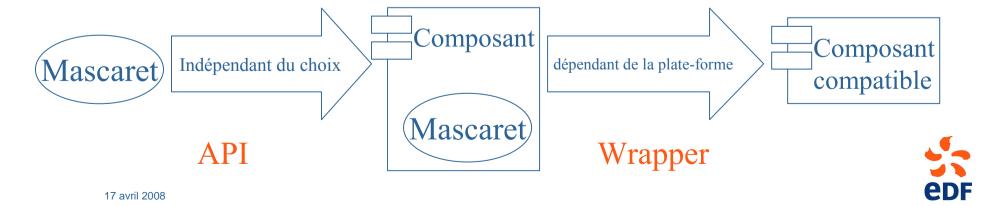
- Développement de « superviseur fortran » adapté à chaque application :
 - Temps de développement important
 - Pas d'environnement commun Pas de mutualisation d'outils transverses
 - La gestion des interactions complexes est difficile
 - Pas de possibilité d'utiliser un code dont on ne dispose pas des sources
- Réalisation de scripts de commande qui gère les exécutables avec modification des fichiers de données
 - Gestion des fichiers d'entrée de données peut être lourde, voire impossible
 - Pas d'environnement commun Pas de mutualisation d'outils transverses
 - La gestion des interactions complexes est difficile

Intégration de l'outil-métier dans des plates-formes de simulation

- L'outil-métier devient un composant-logiciel ré-utilisable pour différents types d'applications et pour différentes plates-formes
- Mutualisation des outils transverses
- Modélisation et simulation de couplages complexes

Intégration d'outils métier (hydraulique) dans des plates-formes de simulation

- Le code « Mascaret » : composant logiciel « métier » rendant un ou plusieurs services
 - calcul l'évolution « état hydraulique » sur un modèle donné entre un temps initial et un temps final : représentation d'état $X_{n+1} = F(X_n, P)$
 - ce composant pourra être appelé à partir de la plate-forme comme un sous-programme (DLL, API)
 - ce service pourra être utilisé avec d'autres composants de la plate-forme


La plate-forme assurera

- la simulation des interactions entre les différents composants
- la mise à disposition de services complémentaires généraux (Solveurs, IHM etc)

Intégration d'outils métiers (hydraulique) dans des plates-formes de simulation

- Rendre inter-opérable le logiciel « Mascaret » :
 - Développer des API qui permettent au code d'être piloté de l'extérieur comme un sous-programme
 - Spécification et structuration du code
 - Définition des variables de l'état hydraulique
 - Identification des différentes phases d'un calcul
 - Définition des variables « modifiables » lors de l'appel au composant logiciel
- Développer des interfaces (Wrapper) entre le code et la plate-forme

Intégration de l'outil « métier » dans Scilab Application aux incertitudes

Chargement du modèle d'étude mis au point à l'aide de Mascaret + Interface Fudaa-Mascaret Boucle sur les variables incertaines – Tirage aléatoire sur les variables incertaines

Modification des conditions aux limites

QLim = [2750, 2750; 2750, 2750] ZLim = [103.7, 103.7; 103.7, 103.7]

Modification des coefficients de Strickler pour chaque tirage

ST1 = GetDblMascaret52("ST1")
ST1 = 37*ones(X)
SetDblMascaret52("ST1",ST1)

[Q, Z, NumeroErreur, TexteErreur] =

RunMascaret52(TempsLim, QLim, ZLim, TypeLim, TempsCalcul, TMPDIR+"\")

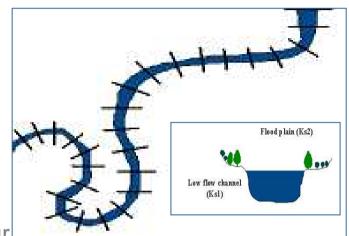
Stocke les variables de sortie

Fin de la boucle
Analyse statistique

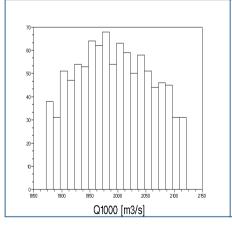
Applications

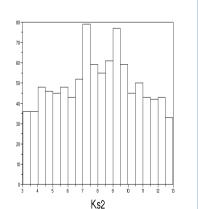
Application : Propagation des incertitudes au travers des modèles hydrauliques

Calcul de ligne d'eau de crue millénnale :


variables incertaines : débit + coefficient de Strickler

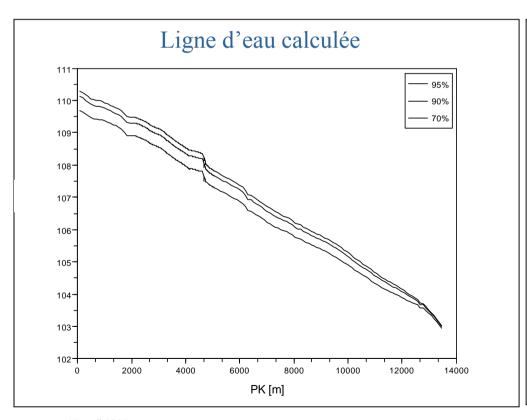
- Débit : loi de probabilité déterminée par une analyse hydrologique
- Le coefficient de Strickler : Avis d'expert
- Propagation des hydrogrammes de rupture progressive de barrage
 - Etude de sensibilité globale sur les variables :
 Débit maximal de rupture + Temps de montée de l'hydrogramme + Coefficient de frottement

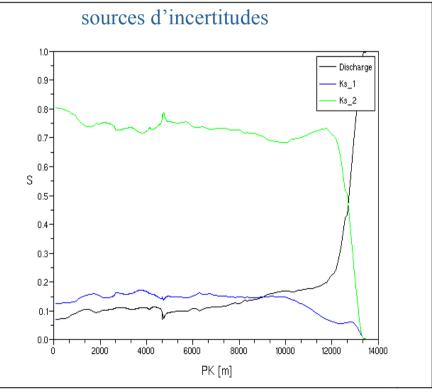

Crue millénnale:


- Caractéristiques de l'étude :
 - Rivière de 13.5 km Ecoulement permanent
 - Lit composé
- Sources d'incertitudes :
 - Débit millénnal
 - Coefficients de frottement lit mineur- lit majeur

Quantification des incertitudes

	μ	σ	c.v.	Borne inf.	Borne Sup.
Q ¹⁰⁰⁰	1977	125	6%	977	2977
K_{s1}	37	3	8%	34	40
K_{s2}	8	5	62%	3	13

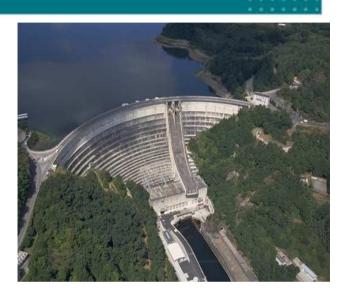




(3) Hauteurs d'eau millénales

- Indépendance entre le coefficient de Strickler et le débit
- Propagation par Monte-Carlo

Hiérarchisation des


Propagation d'hydrogramme de rupture d'un barrage en remblai

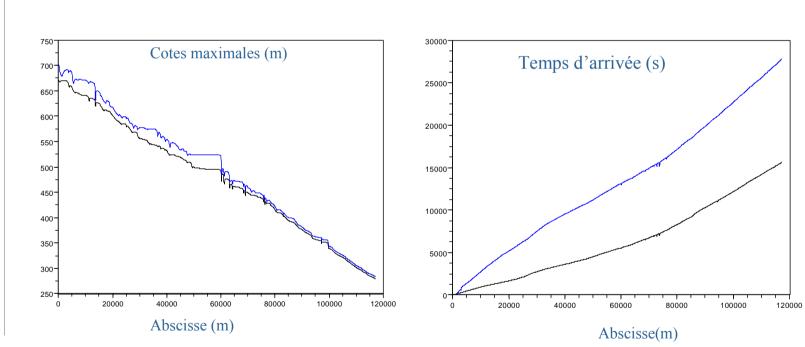
• Caractéristiques de l'étude :

- 120 km de longueur de vallée
- Ecoulement transitoire Lit unique

Sources d'incertitudes :

- Débit maximal temps de montée
- Coefficients de frottement lit unique

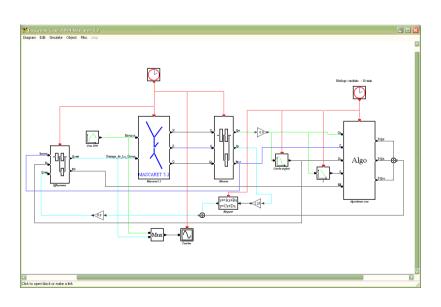
Quantification des incertitudes

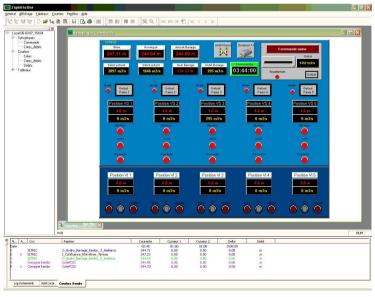

- Analyse statistique sur la base de données des cas de rupture
 - Pas suffisamment de données
- Sensibilité globale dans des bornes définies pas avis d'expert
 - Analyse des formules de la la littérature (débit- temps de montée)
 - Coefficient de frottement : Variation de 10 points autour de la valeur fournie par un barême

Hydrogramme de rupture de barrage

• Analyse des résultats :

 Courbes enveloppes : Cotes maximales et temps d'arrivée de l'onde




Ce travail se poursuit par des analyses statistiques plus fines : Comparaison avec des marges forfaitaires

Simulateur de barrage

- → Intégration du même composant de Mascaret dans le simulateur de Barrages Mobiles en Rivière SIMBA
- → Permet la formation des exploitants à la gestion en crue de leur ouvrage
- → Nombreux modèles Mascaret (70) intégrés à SIMBA et exploités pour la simulation de crues

Etudes: scicos

Formation: simba

5

Conclusions / Perspectives

Conclusions – Perspectives

Avantages :

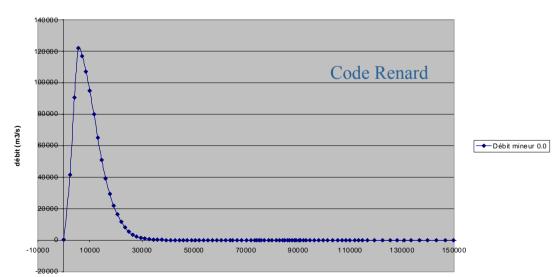
- Mutualisation des développements (Incertitudes, Simulation système et formation)
- Le composant logiciel peut être utilisé en «boîte noire » par des nonspécialistes du métier
- Peut être intégré dans différentes plates-formes :
 - Simulation système et formation : scilab-scicos
 - Incertitudes : Open-Turns
 - Couplage multi-échelle : Pal-Salomé

Inconvénients :

- Nécessite des adaptations du code
- Nécessite un développement et une maintenance des « Interfaces-API»

Les perspectives du système Mascaret

- → Couplage avec des logiciels complémentaires pour les études complexes (multi-dimensions multi-processus) : coupage 1D-2D,...
- → Interopérabilité : Intégration dans des plate-formes de simulation
- → Prise en compte des incertitudes



Application à un cas réel de barrage en remblai

• Formules issues de la littérature :

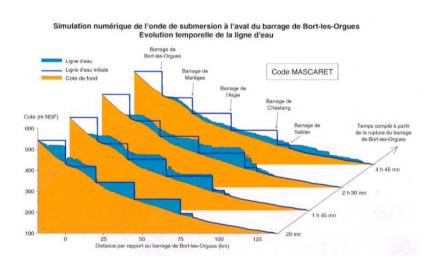
Formules	Hagen	Mac- donald	Costa	Evans	Froelich	Molinaro
Débit pointe (m3/s)	275 000	45 000	47 000	48000	105 000	221 000

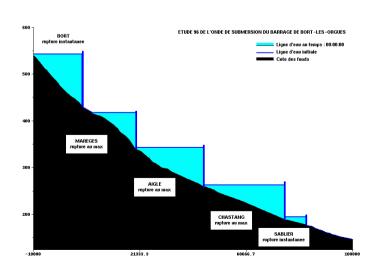
Hydrogramme de rupture progressive

Forte incertitude sur le débit de pointe et le temps de montée de l'hydrogramme:

Facteur 3 sur le débit de pointe

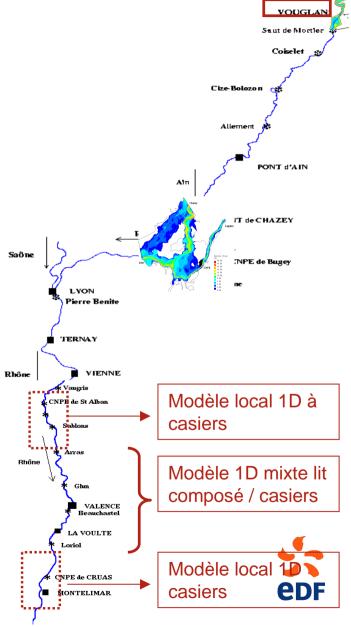
Facteur 2 sur le temps de montée




Onde de submersion et rupture de barrage

→ Nombreuses études d'onde de submersion réalisées :

- Études EDF pour tous les barrages soumis à la réglementation des Plans Particuliers d'Intervention (9000 km de vallée modélisés)
- Reconnaissance à l'international : étude de rupture des barrages par Hydro-Québec, SNC-Lavallin



Protection des centrales nucléaires contre le risque inondation

- → Étude de crue extrême pour la protection des centrales nucléaires contre le risque d'inondation d'origine externe (sûreté)
- → Scénario réglementaire de crue extrême pour le dimensionnement des protections des centrales nucléaires
- → Appui et accompagnement des dossiers auprès de l'Autorité de Sûreté Nucléaire

SYSTEME MASCARET

Hydraulique

3 noyaux

Écoulements permanents
Fluviaux - calage automatique

Régime fluvial non-permanent Couplage avec "Casiers"

Régime transcritique non-permanent

Qualité d'eau

Tracer

Sédimentologie

Courlis

FUDAA-MASCARET

Interface graphique Java PC-UNIX-LINUX **OPTHYCA**

Post-Processeur – SIG

Intégration de l'outil métier « hydraulique » dans des plates-formes de simulation

- Intégrer les outils « métiers » dans des plate-formes de simulation
 - L'outil métier devient un composant logiciel ré- utilisable pour différents type d'applications et pour différentes plates-formes
 - Mutualise les outils transverses
 - La plate-forme gère la synchronisation et la communication entre les différents outils
 - Permet la modélisation et la simulation de couplage complexe

