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Abstract 

We deal with a numerical study of unsteady natural convection and thermal radiation in a 

porous bed of large spherical particles with high emissivity confined between two-vertical hot 

plates and saturated by a homogeneous and isotropic fluid phase. 

We aim to investigate the effects of radiative properties on fluid flow and heat transfer 

behavior inside the porous material. The numerical results show that the volumetric flow rate 

and the convective heat flux exchanged at the channel’s exit are found to be increased when 

the particle emissivity (ε) and/or the absorption coefficient (κ) increase or when the scattering 

coefficient (σs) and/or the single scattering albedo (ω) decrease. Furthermore, the amount of 

heat (Qc) transferred to fluid and the energetic efficiency Ec is found to be increased due to a 

raise in ε values.  

Keywords: natural convection, thermal radiation, particle emissivity, absorption coefficient, 

scattering coefficient, single scattering albedo, porous heat exchanger.  

NOMENCLATURE 

A Aspect ratio of the channel (=H/D) 

Bii,o Modified inlet (respectively, outlet) Biot Numbers (=hi,oD/λ) 

N Planck number (=λβΔT/4n
2
σT

4
) 

R Temperature ratio (=T∞/Th) 

Ra Modified Rayleigh number (=kgβfDΔT/νf) 
Greek letters 

α Thermal diffusivity, [=λ/(ρcp)f] m
2
.s

-1
 

 Volumetric specific heat ratio [=(ρcp)eff /(ρcp)f] 

 Average porosity 

  

I. INTRODUCTION 

         Transport phenomena by natural convection coupled with thermal radiation in porous 

media have been motivated by various applications such as thermal insulation technology, 

material processing, packed bed heat exchangers, to name just few applications.  

       Four distinct approaches are often used to estimate the equivalent radiative properties of a 

porous material. The first approach called the independent scattering theory is based on the 

knowledge of the radiative properties of each individual particles (Bohren and Huffman 

1983). The second approach called the theory of multiple scattering (Tsang et al. 2000) is 

based on the resolution of the equation governing the propagation of electromagnetic fields, 

also named diffusion equation. The third approach is the inverse method of parameter 

identification (Baillis and Sacadura, 2000). The fourth approach is the statistical method of 

Monte Carlo (Tancrez and Taine 2004).  

        In this paper, we are interested in opaque and homogenous medium with particles of size 

greater than the radiation wavelength for which the multiple scattering approach is used to 

predict the equivalent radiative properties. The effects of equivalent radiative properties on 

fluid flow and heat transfer behavior inside the porous material are analysed and discussed.  

II. MATHEMATICAL FORMULATION 



        We consider a vertical channel filled with a fluid-saturated porous medium formed by 

highly emissive large spherical particles, and subjected to a uniform wall hot temperature. The 

porous medium, at local thermal equilibrium assumption, is considered as a homogeneous, 

isotropic, and participating medium that can emit, absorb, and scatter isotropically radiative 

energy. The bounding walls of the channel, with constant emissivity ξ and reflectivity ρ, are 

assumed to be gray-diffuse surfaces. The Darcy flow model is assumed to be valid. The fluid 

is Newtonian and assumed to be a Boussinesqian one.  

II. 1. Governing equations 

       The nondimensionalization of the governing equations is carried out on the basis of 

appropriate scales (Slimi et al. 2004). Hence, the dimensionless governing equations in 

cartesian coordinates are written as follows: 

Mass conservation equation 
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Momentum conservation equation 
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Energy conservation equation 
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Radiative transfer equation 
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II. 2. Initial and boundary conditions 

        Initially, we have:  

       00 x, z, P ;   00 z, x,T                         (5) 

        The bounding walls (i.e., at x=0 and x=1) are impermeable: 
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        At z=0 and for lower modified Rayleigh number, the motorise pressure is assumed to be 

constant (Dalbert et al., 1981). At z=A, the jet of fluid runs into the atmosphere: 

       00 , tx, P ,    0x, A, tP                                                                                               (7) 

        On x=0 and, x=1, a constant hot wall temperature is imposed: 

       1t z, 0,T  ,    1t z, 1,T                                                                                                     (8) 

        On z=0, we introduce a heat transfer coefficient hi as (Slimi et al. 2004): 
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        On z=A, a thermal boundary condition taking into consideration a reverse flow condition 

has been used as follows: 
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        The boundary conditions for radiation intensity can be written as (Fiveland, 1988): 
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III. NUMERICAL METHOD  

        The numerical solution is based on the classical two-dimensional finite-volume method 

(Patankar, 1980). The Temporal derivative is discretised by a fully implicit scheme, while the 

convection and diffusion terms are discretised using the power-law and the central difference 

scheme, respectively.  

The convergence criteria for the iterative procedure is as follows:   
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where Φ stands for P and T at each point (m, n), and i is the iteration level. 

        The number of spatial control volumes is M×N=41×41 and the number of control angles 

is Nθ×N=6×8.  

The present numerical code has been validated with the most available related works. 

Numerical results, not shown here for the sake of brevity, show satisfactory agreement.  

       The effective radiative properties of the porous bed are calculated using the 

comprehensive approach of Singh and Kaviany (1991):  
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Where , , , and  are, respectively, the absorption coefficient, the extinction coefficient, 

the single scattering albedo, and the particle emissivity.    

IV. RESULTS AND DISCUSSION  

       For numerical simulations, we set A=1, γ=0.4, Ra=10
2
, N=10

-2
, Bii=10

2
 and Bio=10

3
.  

       The volumetric flow rate qv and the convective heat flux Q exchanged at the channel’s 

exit. qv and Q are written as (Slimi et al., 2004): 
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       Figure 1(a-b) shows that the increase in ε or κ values (or the decrease in σs or ω values) 

generates an increase in the volumetric flow rate qv and the convective heat flux Q at the 

upper face of the enclosure. 

       Figure 2 provides, the amount of heat (Qc) transferred to fluid with respect to the particle 

emissivity for various time values. In dimensional form, Qc is written as follows: 

     )( ioPfc TTcmQ                                                                                                               (16) 

Where mf is the mass of fluid contained in the channel. To and Ti are the average fluid 

temperatures at the exit, respectively at the entrance of the channel.  



It is clear that the amount of heat (Qc) transferred to surrounding fluid increases according to 

the emissivity of solid particles. In addition, Qc is found to be increased as time goes on. 

        We have also calculated, at the steady state regime, the energetic efficiency Ec for 

various values of the particle emissivity ε. Ec is written as follows: 
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Where Pe denotes the electric power dissipated by the channel hot plates and τ is the due time 

for the establishment of the steady state regime.  

The energetic efficiency Ec is calculated using industrial plates which integrate heating 

resistors with an electric power of about 3 kW. This electric power value is chosen sufficiently 

high to be able to heat perfectly the medium.  

        Table 1 shows the tabulated values of the energetic efficiency, at the steady state regime, 

for various values of the particle emissivity. It is clear that Ec increases with ε. This increase is 

mainly due to the raise in the temperature values caused by the effect of thermal radiation. 

Ε 0 0.25 0.5 0.75 1 

Ec 0.49 2.84 3.53 3.90 4.13 

Table 1. Tabulated values of the energetic efficiency, Ec for various values of the particle 

emissivity,  ε at the steady state regime. 

 

        As a practical application, we propose the model of a heat exchanger which includes a 

porous bed constituted by spherical particles with high emissivity (Figure 3). The medium 

porosity should be sufficiently high to ensure an easy fluid circulation through the pores. In 

this application, each spherical particle constitutes a secondary heat source by emitting 

thermal radiation contributing to an additional heating of the volume of fluid surrounding 

each spherical particle.  

V. CONCLUSION  

        A numerical study has been performed to investigate the effects of radiative properties 

on fluid flow and heat transfer by unsteady free convection and thermal radiation in a porous 

bed confined between two-vertical hot plates and saturated by a homogeneous and isotropic 

fluid phase. It has been shown that the volumetric flow rate and the convective heat flux 

exchanged at the channel’s exit are found to be increased when the particle emissivity (ε) 

and/or the absorption coefficient (κ) increase or when the scattering coefficient (σs) and/or the 

single scattering albedo (ω) decrease. Furthermore, the amount of heat (Qc) transferred to 

fluid and the energetic efficiency Ec are found to be increased due to a raise in the ε values.  
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Figure 1. Time evolutions of (a) qv and (b) Q versus ε, κ, σs and ω. 
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Figure 2. Amount of heat transferred to the fluid as a function of  for various time values. 

                                                      

 

 

 

 

 

 

 

 

 

 

 

 

                

 

Figure 3. A skeleton of a heat exchanger including a porous bed formed by high emissive 

spherical particles 
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