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Multi-model integration for system-level
simulation

= TODAY:

= Simulation = a key factor for development cost reduction

= 0D models = the good modeling level for collaborative
development

= Different domains = different modeling tools
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Simulation approaches

= System Simulation (0D) > ODEs

= Co-simulation
= Heterogeneous models: different domains, different tools
= Synchronization between models, Calculations ASAP
= - Prototyping and validation

Computational part
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model
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Controller-function

~N

Physical system part
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data exchange
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Simulation approaches

= System Simulation (0D) > ODEs

=  Hardware-in-the-Loop simulation
= Real components (ECUs) + simulated models (engine, powertrain)

m  RT constraints

Execution rate, components synchronization
Computation times < RT deadlines

Computational part Physical system part
4 ) a )
Synchronization: v'ODEs
data exchange
\_ )ReaI-Time \_ )

Engine Control: ECU Engine Simulator
Real component Simulated component
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A multicore simulation Kernel:
Why?

= System-level simualtion leads to agglomerate models
which are classically disconnected, increasing the
CPU demand at simulation time

= Simulation time becomes more and more a metric for
model complexity

= Most 0D/1D simulation tools have monocore kernel
while monocore computers are endangered

= How much more will this CPU power remain unused ?
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Problem description:
Acceleration of multi-model simulation

AMESIM® | 2w o f o | @
k= — \ ASAP simulation
Vehicle
L} Acceleration by
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Driver
GT-Power® In—)>
Engine \
l Real-time simulation for HiL
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Control multicore
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Real-time constraints
propagation
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Model splitting from a physical point of

view
AirPath
= Remark O 5T o
= Events are related usually 1 i e S

to the evolution of a subset
of the state vector

= Discontinuities are
independent from a
physical point of view

= Partitioning engine model
= | Discontinuities (locally)
= -> Improve efficiency ?
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Model splitting from a physical point of view

Effect on simulation time (single-core)

1 Companson of simulation time

= Single-thread single-core approach: original
model

= Multi-threads single-core approach: split model

- See only the effect of events relaxation on i 2
the speed-up of LSODAR solver without the
effect of the parallelization

Complete engine

tim=e
Y

AirPath | Cyll | Cyl2 | Cyl3 | Cyl4

time
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Model splitting from a physical point of view
Effect on simulation time (single-core)

zero-crossing zero-crossing zero-crossing
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variable step size variable step size
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variable step size

variable step size

Model splitting from a physical point of view
Effect on simulation time (single-core)
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Model splitting from a physical point of view
Effect on simulation time (single-core)

= The execution of the split model is almost twice faster
than the original model
= = Speed-up = 1.98
= = Thanks to the system decomposition
the use of a single solver per sub-system
= Despite multi threading cost
= The parallelism effect is not yet taken into account
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Multi model execution on multicore

= Partitioning process = generation of loops

= After partitioning a model: execution order?
= The standard version: sv-MCosim
= Most of data dependencies are respected

= The extended version: ev-MCosim
- Data dependency constraints are relaxed to achieve a better

speedup
Model 1 Model 1
Model 2 Model 2
sv-MCosim ev-MCosim
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Model splitting from a physical point of view
sv-MCosim and ev-MCosim (multi-core)
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Dependencies respected
- Speed up = 3,15
- - Accuracy (Delays)
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- Speed up =3,9
- -- Accuracy
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RCosim: Refined scheduling Co-simulation

= RCosim: identify locally if Y is
dependent on U or not?

= FMI gives relationships between each Y
and U

= With FMI each I/O is computed with a
different operation

= Off-line heuristic approach

= Similar to SynDEX (INRIA)
[Grandpierre and Sorel, 2003]

= Objective: Minimize critical path
(CP) latency of DAG
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Rcosim approach
Case study: 4-cylinder internal combustion engine

= Engine model: Spark Ignition F4RT engine
(Renault)

= 4 cylinders + Air Path (turbocharger, throttle, . @,

wastegate,...)

= 118 states
= e.g. crank shaft angle, mass of gas,

energy, temperature,...

m 398 event indicators

- e.g. spark advance time, engine cycle,
intake valve lift,...

= Trigger events, mathematical exception

handling
= 103 operations (update,; ...)
= Modeling & simulation tools

= Dymola with ModEngine library + xMOD with
FMU
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RCosim approach

Scheduling of update operations with RCosim

m Reminder of the
different models of
computation

m sv-MCosim, ev-MCosim,
RCosim

m RCosim

= 103 operations

= Update,, ,;and
u pd ateaII_state

m C(update_all out) «
C(update_all_state)
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RCosim approach
Simulation accuracy improved

m Torque is Direct-Feedthrough (DF)

= numerical error (delays) with
MCosim

= no delays with Rcosim

Simulation method sv-MCosim ev-MCosim RCosim

Er(%) with H=100ps 2.95 4.38 0.68
Er(%) with H=250ps 9.12 9.33 1.1
Er(%) with H=500ps 19.83 19.19 1.37

Simulation method sv-Mcosim ev-MCosim RCosim
Er(%) with H=100ps 0.61 0.63 0.5
Er(%) with H=250us 1.2 1.11 0.88
Er(%) with H=500ps 1.8 1.75 1.23
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Rcosim approach
Simulation speed-up

Simulation method sv-MCosim ev-MCosim RCosim

Speed-up (5 cores)
Compared to a single-threaded 7,82 8,84 10,87
single solver ref.

Speed-up (5 cores)

Compared to a split model on 3.94 4 64 548
single core. ’ ’ ’

= Speed-up > 5 =» supra-linear
= RCosim even faster than ev-MCosim
= thanks to the variable step solver (less iterations)

= With a fixed-step solver :
= Speed up close to ev-cosim, better than sv-Cosim

= No broken cycle = results are strictly identical to single
model / single solver simulation
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Context-based extrapolation
Difficulties and challenges

= Hybrid behaviors of complex systems are difficult to predict
(nonlinearities, discontinuities,...)
= = Hard to predict the future behavior (from past observations)
= No universal prediction scheme, efficient with every signal
= Challenges: fast, causal and reliable prediction
= Small computing cost
= Accurate predictions for any signal behavior
= |dea: Borrow a context-based prediction,
commonly used in lossless image encoders,

(e.g. GIF or PNG)

S\
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Context-based extrapolation

Accuracy: relative integration error/com. step size

- without extrapolation, Tc=100ps
[ Jwithout extrapolation, Tc=250ps
Al - with extrapolation, Tc=250ps
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Real-time simulation
From real-time to simulated time

Real orTsc  —simulation
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e TS || O
D, [—— A B c_|
To = Real-time X, U,y JU, X, YU, X, Y
Ro >
-RTSC
= Relative Real-Time Simulation Constraints (RTSC) I‘u " R, I kam
= Ateachinteraction: Nx T, =t \ y
= Y, required > deadline dy’k Tuk Tukﬁn-
= U, available > refease I, , i "
= |mpact on the underlying computations d y .k D d yk+m
= Related to the characteristics and ¢ (
interconnections >ykl -->yk+ml
= How to propagate? ti | ”
k tk'+m
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RTSC propagation

= Models graph
= RTSC propagated to all (U, X, Y)

= Propagation rules (data flow)
= Release : r-mesh, from start to end of the graph
= Deadline : d-mesh, from end to start of the graph

= = Vi absolute constraints
= Confluent dependencies
= Heterogeneous dynamics

= Timestep h, = h,
= Divisors of the period 1/O
= Multiples
= Fixed

= Multiple I/O connections
= Cyclic graphs with restrictions
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Intra-model propagation

/ Non Direct Feedthrough Direct Feedthrough

update_in _*N_y update_out update_in _) update_out

update_in i> update_state update_in i) update_state
update_out L) update_in update_out L) update_in

update_out L> update_state update_out L> update_state

!

Phased RTSC constraints

R,D :(/.CI),T_L

phase periode
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Future work

= Address multi-rhythm models with RCosim

= Develop new dedicated heuristics
= Handle non thread-safe implementation of FMU
= Pipelining
= Define rules for fine-grained mapping of real-time
constraints

= Extend rules to handle RCosim level of granularity
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