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Main features of ODOE4OPE

Main features of ODOE4OPE

@ Synthesizes the online design of the optimal experiment (DOE) and online
closed-loop identification.

@ For linear and nonlinear dynamic model based systems.

@ Online optimal input design which optimizes the sensitivities of the
measurements with respect to the unknown constant model parameters.

@ Combines observer design theory and an on-line predictive controller
(MPCQ).

@ Input and output constraints may be specified to keep the process in a
desired operating zone.

o For simulations and real applications.

@ No existing similar software available on the market.
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Proposed closed-loop optimal identification approach

Optimal control lav

The components

Model (linear or nonlinear)
x(t) = f(x(t),0,u(t))
{56 2 R s &

where x € R” is the state vector, y € RP is the output vector, u € Y C R™ is
the input vector, 6 € RY is the unknown constant parameters vector.
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Proposed closed-loop optimal identification approach Closed loop control structure

Optimal control

The components

f(x(t), 0, u(t))
y(t) = h(x(t),0,u(t)) (1)

where x € R” is the state vector, y € RP is the output vector, u € Y C R™ is
the input vector, 6 € RY is the unknown constant parameters vector.

Observer

@ system augmented with the unknown constant model parameters.
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@ synthesis of an observer for the system augmented: high gain observer,
EKF, adaptive-gain observer, ...
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Proposed closed-loop optimal identification approach Closed loop control structure

Optimal control

The components

Model (linear or nonlinear)

x(t) = F(x(t).0, u(t))
(M){y(r) = h(x(t).0, ult)) )

where x € R” is the state vector, y € RP is the output vector, u € Y C R™ is
the input vector, 6 € RY is the unknown constant parameters vector.

Observer

@ system augmented with the unknown constant model parameters.
@ synthesis of an observer for the system augmented: high gain observer,
EKF, adaptive-gain observer, ...

Sensitivity model

D50 =4 (2)= 2 (&) =2 4 2
(Me){ g:yea; &9+@agx ot 26 T ox a0 (2)
0
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Proposed closed-loop optimal identification approach g | structure

Optimal control law design

Optimal control law design

@ Sensitivity matrix:

ox ox ox
a0y |, 90x|, T 80, |,
Ox " :
Zk = 961 k (3)

Ixn IOxpn

20,

k

o Fisher Information Matrix (FIM): My = Z,(TZk
o Cost function

k

J = O(F(Xjks Ujjir Oiii)), .
with F(Xjjk, Ui, Oxiic) = 7 2oj-icts Mij (4)
ci(y,x,0,u) <0

@ Criterion: A-optimality

U= arg MaXye(up, umy] JA(Y) (5)
with  Ja(u) = trace(F)
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Stage of development

Stage of development

o History: created in 2009

@ Fundamentals Aspects:
e 2006-2010: Saida Flila’s PhD thesis
e Mars 2012: PhD thesis CIFRE (J. QIAN) between Acsystéeme and LAGEP
(UMR5007, CNRS, UCBL1)

@ User interface: under Matlab, GUI under development
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The nonlinear model of Bio-reactor

. Simulation results
Case study: Bio-reactor

The nonlinear model of Bio-reactor: X + S5 — X

The nonlinear dynamical model of the process is:

x(t) = L5 x4y D)X ()

S(t)+ K
)\ $(0) = —a‘;g’%ﬁxu) — D(t) (S(t) - Sin) ©)
y(t) = X(2).

where:

o Inputs: a scalar controllable dilution rate D(t) (h™') and an substrate
concentration S;, (g/L).

o Output: a biomass X(t) (g/L)

@ Unknowns constants parameters: fimax and .
e input constraints: 0 h™* < D(j) < 0.2h™*

@ output constraint: X(j) < 1.95g/L

Objective: based on (X) online identify the unknowns parameters.
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Simulation results
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Case study: Bio-reactor

Simulation results

@ Input applied: D(t)

@ Process output: Biomass X(t)
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Simulation results

@ Input applied: D(t)
@ Process output: Biomass X(t)

o Parameter estimation: pimax
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Simulation results
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Simulation results

@ Input applied: D(t)

@ Process output: Biomass X(t)

Parameter estimation: fimax

o Parameter estimation: «
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Case study: Bio-reactor

Simulation results

The nonlinear model of
Simulation results

@ Input applied: D(t)
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The nonlinear model of B

. Simulation results
Case study: Bio-reactor

Simulation results

@ Input applied: D(t)

@ Process output: Biomass X(t)
o Parameter estimation: pimax

o Parameter estimation: «

@ Sensitivities of the model states
with respect to the estimated

parameters ggi (t)
J
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The nonlinear model of

. Simulation results
Case study: Bio-reactor

Simulation results

@ Input applied: D(t)

@ Process output: Biomass X(t)
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Conclusion

Conclusion

@ ODOE4OPE is able to design online the optimal experiment under
constraints.

o ODOE4OPE is able to identify online model parameters.

@ The combination of an observer and a predictive control in closed loop
improve the speed of the parameter estimation.

@ The sensitivity criteria improve the accuracy of parameter estimation and
leads to an optimal control at the same time.

@ The input and output constraints specify the physical limitations imposed
by the system and ensure the efficiency of the DOE.

@ The software may be adapted and tuned for any user defined dynamic
model.

odoedope@univ-lyonl.fr doedope.univ-lyonl.fr



A Model Predictive Control software: MPCQCB

Jun QIANY2, Pascal DUFOUR"3, Madiha NADRI*

1Laboratory of Process Control and Chemical Engineering (LAGEP), UMR5007, CNRS,
University Claude Bernard Lyon 1
2Acsystéme company (IT and Control engineering), Rennes, France
L. 2Emails: jun.qgian@acsysteme.com or gian®lagep.univ-lyonl.fr;
dufour@lagep.univ-lyonl.fr; nadri@lagep.univ-lyonl.fr;
3Project leader and contact. Software website: http://MPCatCB.univ-lyon1.fr

Journée nationale des logiciels de modélisation et de calcul scientifique (LMCS):
07/12/2012

Université Claude Bernart




Main features of the MPCQCB software

Main features of the MPC@CB software

@ A control software for dynamic systems based on any kind of model: SISO
or MIMO (S=single, M=multiple), linear or nonlinear, time variant or time
invariant, with ordinary differential equations (ODE) and/or partial
differential equations (PDE).
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Main features of the MPCQCB software

Main features of the MPC@CB software

@ A control software for dynamic systems based on any kind of model: SISO
or MIMO (S=single, M=multiple), linear or nonlinear, time variant or time
invariant, with ordinary differential equations (ODE) and/or partial
differential equations (PDE).

@ A model predictive control (MPC) strategy for solving an optimal control
problem (trajectory tracking, processing time minimization, any user
defined criteria ...) with input constraints and with (or without) output
constraints.

@ Open loop or PID may also be applied by the software before using
MPC®OCB (to compare these different control approaches).

@ A software sensor (observer) based on model can be introduced.

@ Industrial application domains: chemistry/chemical engineering, electrical
engineering, food, materials, mechanics, pharmaceuticals,...

@ For simulation (training) or real time application.

MPCatCB®@univ-lyon1.fr PCatCB.univ-lyon1.fr/



MPC: general framework

MPC: general framework

@ MPC scheme

< PAST A FUTURE >
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| | | | | | | | |
f T T T T T T 1 T '
Sample Time
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@ MPC scheme
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@ MPC scheme
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MPC: general framework

@ MPC scheme
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MPCQCB: specific control approach used

Linearized IMC-MPC structure

Formulation of the optimization problem solved in a MPC approach

Linearized IMC-MPC structure

Vror(K) Optimizati | aug) 4
algorithm y’

uo (K)

MPCQCB is based on an internal model control (IMC) structure where:
@ Nonlinear model Sy is solved off-line.
@ Time-varying linearized model Sty (obtained from Sp) is solved on-line.

@ Off-line open loop results are used on-line for the correct closed loop
optimal constrained tuning of the control action.
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MPCQCB: specific control approach used
Linearized IMC-MPC structure
Formulation of the optimization problem solved in a MPC approach

Formulation of the optimization problem solved in a MPC approach

minp Jior = J(p) + Jexe(p)

J(p) = X0t 8(vrer(7): Aym(j), Au(p())), e(k))

Jet(p) = S (S5, wimax?(0, ci(yrer (1), Aym(i), Bu(p(j)), e(K))))
p: unconstrained input parameter

¢i: output constraints for the controlled variables

Input constraints handling: hyperbolic transformation

Ouput constraints handling: exterior penalty method

Control algorithm: Levenberg-Maquardt’s algorithm

(1)
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Stage of development for MPCQ@CB

= L] e ER

MPC@CB v1.0

Université Claude Bernard Lyon 1
LAGEP (UMR 5007 CNRS)

) Croating 3 now projoct e ' i A | L= ] |

Enter new project directory ()

Enter new project name. mpe@ch
Enter input dimension f
Enter output dimension 1

o Cancel

ntaizaton

@ History: created in 2007, under Matlab, with GUI

@ Today: a standalone application without Matlab is available
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The nonlinear model of CSTR
Case study: CSTR Simulation results

The nonlinear model of CSTR

A continuous stirred tank reactor (CSTR): A — B is described as follows:
Ga(t) = £(ch — ca(t)) — koexp (— (£) /T(2)) ealt)
()] T(&) = &(Tr — T(2) + S koexp (~ (5) /T(8)) ca+ A (Te — T(1))
y(t) = ca(t)
(2)

Where:

@ Input: the controllable temperature of cooling jacket T.(t) (K).

o Output: the concentration of A ca(t) (mol/m?)

@ Input constraints: 250K < T, < 320K.

@ Output constraint y > ymin = 0.87.
Objective: use MPCQ@CB (with or without the output constraint) for the
set-point tracking of a reference value 0.86.
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The nonlinear
Case study: CSTR Simulation results

Simulation results

@ without the output constraint @ with the output constraint: y > ypi, = 0.87
@ optimal input applied @ optimal input applied
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Conclusion: setpoint regulation, OK! Conclusion: constrained setpoint regulation, OK!
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Conclusion

Conclusion

o MPCQCB is easily tunable for any new dynamic process.

@ The specified user defined constrained control objectives are well achieved
by the online closed loop control with MPCQ@CB.

@ With the off-line and on-line IMC-MPC structure, the on-line
computational time of optimization is decreased by MPCQCB.

@ More case studies are discussed on the website.

o MPCQCB is available: short time evaluation, commercial licence or
embedded in a complete turnkey solution for the customer.

MPCatCB®@univ-lyon1.fr PCatCB.univ-lyon1.fr/



Contact for the softwares

Contact for the softwares

Pascal DUFOUR

Associate professor

University Claude Bernard Lyon 1, Campus de la Doua
Ecole CPE, bat 308G, étage 3

LAGEP UMR 5007, Bureau G322

3 rue Victor Grignard

69100 Villeurbanne, France

Tel: 433472431878

dufour@lagep.univ-lyon1.fr

http://www.tinyurl.com /dufourpascal

ODOE4OPE

Email: odoe4ope@univ-lyonl.fr
Website: http://odoedope.univ-lyonl.fr

MPCQCB

Email: MPCatCBQuniv-lyonl.fr
Website: http://mpcatcb.univ-lyonl.fr/
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Annex A: ODOE4OPE

@ Simulation condition
o Parameters in the model of the bio-reactor

Parameter Symbol  Value
The maximal specific rate of the biomass (h’l) Hmax 0.3
The yield (-) a 1
The constant of the saturation (g/L) K 0.05
The substrate concentration in the feed (g/L) Sin 2

o Initial conditions and parameters value for the simulation
Initial conditions and Parameters Symbol Value (Unit)
Target values of parameters [01 62], [0.31]
Initial estimates of parameters [61(0) 62(0)] [0.250.8]
Initial values of model states [Xm1(0) xm2(0)]  [0.01 2]
Initial estimates of states [%1(0) %2(0)] [0.011.5]
Initial estimate of covariance P(0) 50 x /
Time of the simulation Tin 100 h
Sampling period Ts 0.25 h
Prediction horizon Np 8
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@ Observer for bio-reactor
o System augmented:

. _ O1x(1)
x1(t) = Wgal(x;;(t) — u(t)x1(t)
. 1x2(t
(M) )-(2(1') = 792mxl(t) — u(t) (x(t) — a2) 3)
61 =0
éz =0

y(te) = xa(tk),

where ty — tx_1 is the sampling time measurements.
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o Extended Kalman Filter (EKF)

Model x(t) = f(x(t), u(t)) + w(t), w(t) € N(0, Q(t))
¥k = h(xk) + vi, vk € N(0, R¢) where xix = x(tx)
Initialize )A(O‘O'(:)E[X(?)](’ )PO‘(E T) Var[x(to)]
. X(t) = F(R(t), u(t
pregice {500~ ) PP+ 01t
with { R(tk—1) = Re—1jk—1
P(tk-1) (: I)Dkfl\kfl
Rijk—1 = X(tk
~ { Puji1 = P(t)
Update Kk = Puj—1Hy{ (HkPrx—1Hi + Re) ™!
Rk = Rupk—1 + Ki(yx — h(Rijk—1))
Pk = (I = KiHi) Pijie—1
where F(t) = 2 H(t) = 2h

Ox 1%(t),u(t)’ O 1841
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Annex A: ODOE4OPE

@ Sensitivity model of the bio-reactor

fro1(t) = zégi(z — u(t)xen(t) + él(t)Xz(t)Xlel(t)(Xz(( )( s :)r ax (t)x01(t)

faoa() = —u(t)xa0n + él(t)XZ(t)XM(t)(XEi:)(;:)aS a1 (£)x202(t)

Soon () = — éz(xz)(iz)(i)zll(t) — u(t)o0r(t) — 1 (1)Ba(2) Xz(t)X191(t)(Xz(X2)(:)rilllJ;281X1(f)Xzel(t)
Soa(t) = — 9111)();2)(1):11@) — u(t)xea(t) — Br(t)Ba(2) Xz(t)sz(t)(Xi)(Qi:)rilllJ)rzalX1(f)Xzez(t)
x101(0) = x162(0) = x201(0) = x202(0) = 0

) (4)
where x;g; = Tg'
J
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Annex B: MPCQCB

@ The constrained optimization problem based on IMC-MPC structure is
described as followed:

ming J(8) = D 8(vrer (i), Aym(j), Au(j — 1), e(k))
jea*

Abd=[--Au()---]T Vel

Au(j) = Du(k+ Ne —1) Vje Ty

tmin = t0(j) < Au(j) < tmin — wo(j) Vj € Tp* (5)

A < Au(j) — Au( — 1) < Dty Vj € Tg?

Dy = Dimin — (u0(j) = uo(j = 1)) Vj € Tp* "

D = Dimax — (w0(j) — wo(j — 1)) Vi€ Jp" "

iyt () Aym(j), Au(j — 1), (k) < 0Vj € Tp*, Vi € I}

and subjet to the resolution of the model (Stv).
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Annex B: MPCQCB

@ Input constraints handling: hyperbolic transformation:

u(j) = £(p(j)) = fmoy + famptanh(PLmery yj e gt

f—amp
p(j) € RVj € J~* (unconstrained input parameter)
f — Fmax+fmin
fmoy __ fmax—"fmin (6)
amp — >

frmin = MaxX(Umin, u(j — 1) + Aumin) Vj € .YONC_I
fmax = maX(Umaxa U(j - 1) + AUma><) vJ S joNC_l

u(d) e (TR ulj - 1) + Athmax]

ANty u(f — 1) + Attyyi)

Fig. Mapping from unconstrained variable p into constrained variable u
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Annex B: MPCQCB

o Control algorithm: Levenberg-Maquardt
AP = AP — (Vi + M) St (7)

where the argument Ap is determined at each sample instant k by this

iteration procedure, \7°J2, and s7J2, are the criteria gradient and criteria

hessain with respect to Ap" at the iteration n.
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