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Main features of ODOE4OPE

Synthesizes the online design of the optimal experiment (DOE) and online
closed-loop identification.

For linear and nonlinear dynamic model based systems.

Online optimal input design which optimizes the sensitivities of the
measurements with respect to the unknown constant model parameters.

Combines observer design theory and an on-line predictive controller
(MPC).

Input and output constraints may be specified to keep the process in a
desired operating zone.

For simulations and real applications.

No existing similar software available on the market.
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The components

Model (linear or nonlinear)

(M)

{
ẋ(t) = f (x(t), θ, u(t))
y(t) = h(x(t), θ, u(t))

(1)

where x ∈ Rn is the state vector, y ∈ Rp is the output vector, u ∈ U ⊂ Rm is
the input vector, θ ∈ Rq is the unknown constant parameters vector.

Observer

system augmented with the unknown constant model parameters.

synthesis of an observer for the system augmented: high gain observer,
EKF, adaptive-gain observer, ...

Sensitivity model

(Mθ)

{
∂
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x̃θ = d

∂t
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)
= ∂

∂θ

(
∂x
∂t

)
= ∂f

∂θ
+ ∂f

∂x
∂x
∂θ

∂y
∂θ

= ỹθ = ∂h
∂θ

+ ∂h
∂x

∂x
∂θ

(2)

4/9 odoe4ope@univ-lyon1.fr http://odoe4ope.univ-lyon1.fr



Main features of ODOE4OPE
Proposed closed-loop optimal identification approach

Stage of development
Case study: Bio-reactor

Conclusion

Closed loop control structure
The components
Optimal control law design

The components

Model (linear or nonlinear)

(M)

{
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Optimal control law design

Sensitivity matrix:

Zk =



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∂θ1

∣∣∣
k

∂x1
∂θ2

∣∣∣
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∣∣∣
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


(3)

Fisher Information Matrix (FIM): Mk = ZT
k Zk

Cost function



J = φ(F (xj|k , uj|k , θk|k)),

with F (xj|k , uj|k , θk|k) = 1
Np

∑k+Np

j=k+1 Mj|k
ci (y , x , θ, u) < 0

(4)

Criterion: A-optimality
{

u = arg maxu∈[umin,umax ] JA(u)
with JA(u) = trace(F )

(5)
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Stage of development

History: created in 2009

Fundamentals Aspects:
2006-2010: Saida Flila’s PhD thesis
Mars 2012: PhD thesis CIFRE (J. QIAN) between Acsystème and LAGEP
(UMR5007, CNRS, UCBL1)

User interface: under Matlab, GUI under development
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The nonlinear model of Bio-reactor
Simulation results

The nonlinear model of Bio-reactor: X + S → X

The nonlinear dynamical model of the process is:

(Σ)





Ẋ (t) =
µmaxS(t)

S(t) + K
X (t)− D(t)X (t)

Ṡ(t) = −α µmaxS(t)

S(t) + K
X (t)− D(t) (S(t)− Sin)

y(t) = X (t).

(6)

where:

Inputs: a scalar controllable dilution rate D(t) (h−1) and an substrate
concentration Sin (g/L).

Output: a biomass X (t) (g/L)

Unknowns constants parameters: µmax and α.

input constraints: 0 h−1 6 D(j) 6 0.2 h−1

output constraint: X (j) 6 1.95 g/L

Objective: based on (Σ) online identify the unknowns parameters.
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The nonlinear model of Bio-reactor
Simulation results

Simulation results

Input applied: D(t)

Process output: Biomass X (t)

Parameter estimation: µmax

Parameter estimation: α

Sensitivities of the model states
with respect to the estimated
parameters ∂xi

∂θj
(t)
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Conclusion

ODOE4OPE is able to design online the optimal experiment under
constraints.

ODOE4OPE is able to identify online model parameters.

The combination of an observer and a predictive control in closed loop
improve the speed of the parameter estimation.

The sensitivity criteria improve the accuracy of parameter estimation and
leads to an optimal control at the same time.

The input and output constraints specify the physical limitations imposed
by the system and ensure the efficiency of the DOE.

The software may be adapted and tuned for any user defined dynamic
model.

9/9 odoe4ope@univ-lyon1.fr http://odoe4ope.univ-lyon1.fr



Main features of the MPC@CB software
MPC: general framework

MPC@CB: specific control approach used
Stage of development for MPC@CB

Case study: CSTR
Conclusion

Contact for the softwares
References

A Model Predictive Control software: MPC@CB

Jun QIAN1,2, Pascal DUFOUR1,3, Madiha NADRI1

1Laboratory of Process Control and Chemical Engineering (LAGEP), UMR5007, CNRS,
University Claude Bernard Lyon 1

2Acsystème company (IT and Control engineering), Rennes, France
1,2Emails: jun.qian@acsysteme.com or qian@lagep.univ-lyon1.fr;

dufour@lagep.univ-lyon1.fr; nadri@lagep.univ-lyon1.fr;
3Project leader and contact. Software website: http://MPCatCB.univ-lyon1.fr

Journée nationale des logiciels de modélisation et de calcul scientifique (LMCS):
07/12/2012

1/18 MPCatCB@univ-lyon1.fr http://MPCatCB.univ-lyon1.fr/



Main features of the MPC@CB software
MPC: general framework

MPC@CB: specific control approach used
Stage of development for MPC@CB

Case study: CSTR
Conclusion

Contact for the softwares
References

Main features of the MPC@CB software

A control software for dynamic systems based on any kind of model: SISO
or MIMO (S=single, M=multiple), linear or nonlinear, time variant or time
invariant, with ordinary differential equations (ODE) and/or partial
differential equations (PDE).

A model predictive control (MPC) strategy for solving an optimal control
problem (trajectory tracking, processing time minimization, any user
defined criteria ...) with input constraints and with (or without) output
constraints.

Open loop or PID may also be applied by the software before using
MPC@CB (to compare these different control approaches).

A software sensor (observer) based on model can be introduced.

Industrial application domains: chemistry/chemical engineering, electrical
engineering, food, materials, mechanics, pharmaceuticals,...

For simulation (training) or real time application.
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or MIMO (S=single, M=multiple), linear or nonlinear, time variant or time
invariant, with ordinary differential equations (ODE) and/or partial
differential equations (PDE).

A model predictive control (MPC) strategy for solving an optimal control
problem (trajectory tracking, processing time minimization, any user
defined criteria ...) with input constraints and with (or without) output
constraints.

Open loop or PID may also be applied by the software before using
MPC@CB (to compare these different control approaches).

A software sensor (observer) based on model can be introduced.

Industrial application domains: chemistry/chemical engineering, electrical
engineering, food, materials, mechanics, pharmaceuticals,...

For simulation (training) or real time application.
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Linearized IMC-MPC structure
Formulation of the optimization problem solved in a MPC approach

Linearized IMC-MPC structure

MPC@CB is based on an internal model control (IMC) structure where:

Nonlinear model S0 is solved off-line.

Time-varying linearized model STVL (obtained from S0) is solved on-line.

Off-line open loop results are used on-line for the correct closed loop
optimal constrained tuning of the control action.

4/18 MPCatCB@univ-lyon1.fr http://MPCatCB.univ-lyon1.fr/



Main features of the MPC@CB software
MPC: general framework

MPC@CB: specific control approach used
Stage of development for MPC@CB

Case study: CSTR
Conclusion

Contact for the softwares
References

Linearized IMC-MPC structure
Formulation of the optimization problem solved in a MPC approach

Formulation of the optimization problem solved in a MPC approach





minp Jtot = J(p) + Jext(p)

J(p) =
∑k+Np

j=k+1 g(yref (j),∆ym(j),∆u(p(j)), e(k))

Jext(p) =
∑k+Np

j=k+1(
∑Nc

i=1 wimax2(0, ci (yref (j),∆ym(j),∆u(p(j)), e(k))))

p: unconstrained input parameter
ci : output constraints for the controlled variables
Input constraints handling: hyperbolic transformation
Ouput constraints handling: exterior penalty method
Control algorithm: Levenberg-Maquardt’s algorithm

(1)
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Stage of development for MPC@CB

History: created in 2007, under Matlab, with GUI

Today: a standalone application without Matlab is available
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The nonlinear model of CSTR
Simulation results

The nonlinear model of CSTR

A continuous stirred tank reactor (CSTR): A→ B is described as follows:

(Σ)





ċA(t) = q
V

(c f
A − cA(t))− k0exp

(
−
(

E
R

)
/T (t)

)
cA(t)

Ṫ (t) = q
V

(Tf − T (t)) + ∆H
ρCp

k0exp
(
−
(

E
R

)
/T (t)

)
cA + UA

ρVCp
(Tc − T (t))

y(t) = cA(t)
(2)

Where:

Input: the controllable temperature of cooling jacket Tc (t) (K).

Output: the concentration of A cA(t) (mol/m3)

Input constraints: 250K < Tc < 320K .

Output constraint y > ymin = 0.87.

Objective: use MPC@CB (with or without the output constraint) for the
set-point tracking of a reference value 0.86.
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Simulation results

Simulation results

without the output constraint

optimal input applied

setpoint trajectory tracking

Conclusion: setpoint regulation, OK!

with the output constraint: y > ymin = 0.87

optimal input applied

trajectory tracking

Conclusion: constrained setpoint regulation, OK!
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Conclusion

MPC@CB is easily tunable for any new dynamic process.

The specified user defined constrained control objectives are well achieved
by the online closed loop control with MPC@CB.

With the off-line and on-line IMC-MPC structure, the on-line
computational time of optimization is decreased by MPC@CB.

More case studies are discussed on the website.

MPC@CB is available: short time evaluation, commercial licence or
embedded in a complete turnkey solution for the customer.
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Contact for the softwares

Pascal DUFOUR

Associate professor
University Claude Bernard Lyon 1, Campus de la Doua
Ecole CPE, bât 308G, étage 3
LAGEP UMR 5007, Bureau G322
3 rue Victor Grignard
69100 Villeurbanne, France
Tel: +33 4 72 43 18 78
dufour@lagep.univ-lyon1.fr
http://www.tinyurl.com/dufourpascal

ODOE4OPE

Email: odoe4ope@univ-lyon1.fr
Website: http://odoe4ope.univ-lyon1.fr

MPC@CB

Email: MPCatCB@univ-lyon1.fr
Website: http://mpcatcb.univ-lyon1.fr/
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Annex A: ODOE4OPE

Simulation condition
Parameters in the model of the bio-reactor

Parameter Symbol Value
The maximal specific rate of the biomass (h−1) µmax 0.3
The yield (-) α 1
The constant of the saturation (g/L) K 0.05
The substrate concentration in the feed (g/L) Sin 2

Initial conditions and parameters value for the simulation

Initial conditions and Parameters Symbol Value (Unit)
Target values of parameters [θ1 θ2]p [0.3 1]

Initial estimates of parameters [θ̂1(0) θ̂2(0)] [0.25 0.8]
Initial values of model states [xm1(0) xm2(0)] [0.01 2]
Initial estimates of states [x̂1(0) x̂2(0)] [0.01 1.5]
Initial estimate of covariance P(0) 50 × I
Time of the simulation Tfin 100 h
Sampling period Ts 0.25 h
Prediction horizon Np 8
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Annex A: ODOE4OPE

Observer for bio-reactor
System augmented:

(M)



ẋ1(t) =
θ1x2(t)

x2(t) + a1
x1(t) − u(t)x1(t)

ẋ2(t) = −θ2
θ1x2(t)

x2(t) + a1
x1(t) − u(t) (x2(t) − a2)

θ̇1 = 0

θ̇2 = 0
y(tk ) = x1(tk ),

(3)

where tk − tk−1 is the sampling time measurements.
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Annex A: ODOE4OPE

Extended Kalman Filter (EKF)

Model ẋ(t) = f (x(t), u(t)) + w(t),w(t) ∈ N(0,Q(t))
yk = h(xk ) + vk , vk ∈ N(0,Rk ) where xk = x(tk )

Initialize x̂0|0 = E [x(t0)], P0|0 = Var [x(t0)]

Predict

{
˙̂x(t) = f (x̂(t), u(t))

Ṗ(t) = F (t)P(t) + P(t)F (t)T + Q(t)

with

{
x̂(tk−1) = x̂k−1|k−1

P(tk−1) = Pk−1|k−1

⇒
{

x̂k|k−1 = x̂(tk )
Pk|k−1 = P(tk )

Update Kk = Pk|k−1H
T
k (HkPk|k−1H

T
k + Rk )−1

x̂k|k = x̂k|k−1 + Kk (yk − h(x̂k|k−1))
Pk|k = (I − KkHk )Pk|k−1

where F (t) = ∂f
∂x

∣∣
x̂(t),u(t)

, H(t) = ∂h
∂x

∣∣
x̂k|k−1
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Annex A: ODOE4OPE

Sensitivity model of the bio-reactor

ẋ1θ1(t) =
x2(t)x1(t)

x2(t) + a1
− u(t)x1θ1(t) + θ̂1(t)

x2(t)x1θ1(t)(x2(t) + a1) + a1x1(t)x2θ1(t)

(x2(t) + a1)2

ẋ1θ2(t) = −u(t)x1θ2 + θ̂1(t)
x2(t)x1θ2(t)(x2(t) + a1) + a1x1(t)x2θ2(t)

(x2(t) + a1)2

ẋ2θ1(t) = −
θ̂2(t)x2(t)x1(t)

x2(t) + a1
− u(t)x2θ1(t) − θ̂1(t)θ̂2(t)

x2(t)x1θ1(t)(x2(t) + a1) + a1x1(t)x2θ1(t)

(x2(t) + a1)2

ẋ2θ2(t) = −
θ̂1(t)x2(t)x1(t)

x2(t) + a1
− u(t)x2θ2(t) − θ̂1(t)θ̂2(t)

x2(t)x1θ2(t)(x2(t) + a1) + a1x1(t)x2θ2(t)

(x2(t) + a1)2

x1θ1(0) = x1θ2(0) = x2θ1(0) = x2θ2(0) = 0
(4)

where xiθj = ∂xi
∂θj

.
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Annex B: MPC@CB

The constrained optimization problem based on IMC-MPC structure is
described as followed:




minũ J(ũ) =
∑

j∈JNp
1

g(yref (j),∆ym(j),∆u(j − 1), e(k))

∆ũ = [· · ·∆u(j) · · · ]T ∀j ∈ J Nc−1
0

∆u(j) = ∆u(k + Nc − 1) ∀j ∈ J Np−1

Nc

umin − u0(j) ≤ ∆u(j) ≤ umin − u0(j) ∀j ∈ J Np−1
0

∆u
′
min ≤ ∆u(j)−∆u(j − 1) ≤ ∆u

′
max ∀j ∈ J Np−1

0

∆u
′
min = ∆umin − (u0(j)− u0(j − 1)) ∀j ∈ J Np−1

0

∆u
′
max = ∆umax − (u0(j)− u0(j − 1)) ∀j ∈ J Np−1

0

ci (yref (j),∆ym(j),∆u(j − 1), e(k)) ≤ 0 ∀j ∈ J Np

0 , ∀i ∈ In
1

and subjet to the resolution of the model (STVL).

(5)
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Annex B: MPC@CB

Input constraints handling: hyperbolic transformation:




u(j) = f (p(j)) = fmoy + famptanh(
p(j)−fmoy

f−amp
) ∀j ∈ J Nc−1

0

p(j) ∈ R ∀j ∈ J Nc−1
0 (unconstrained input parameter)

fmoy = fmax +fmin
2

famp = fmax−fmin
2

fmin = max(umin, u(j − 1) + ∆umin) ∀j ∈ J Nc−1
0

fmax = max(umax , u(j − 1) + ∆umax ) ∀j ∈ J Nc−1
0

(6)

Fig. Mapping from unconstrained variable p into constrained variable u
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Annex B: MPC@CB

Control algorithm: Levenberg-Maquardt

∆p̃n+1 = ∆p̃n − (52Jn
tot + λI )−1 5 Jn

tot (7)

where the argument ∆p̃ is determined at each sample instant k by this
iteration procedure, 52Jn

tot and 5Jn
tot are the criteria gradient and criteria

hessain with respect to ∆p̃n at the iteration n.
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