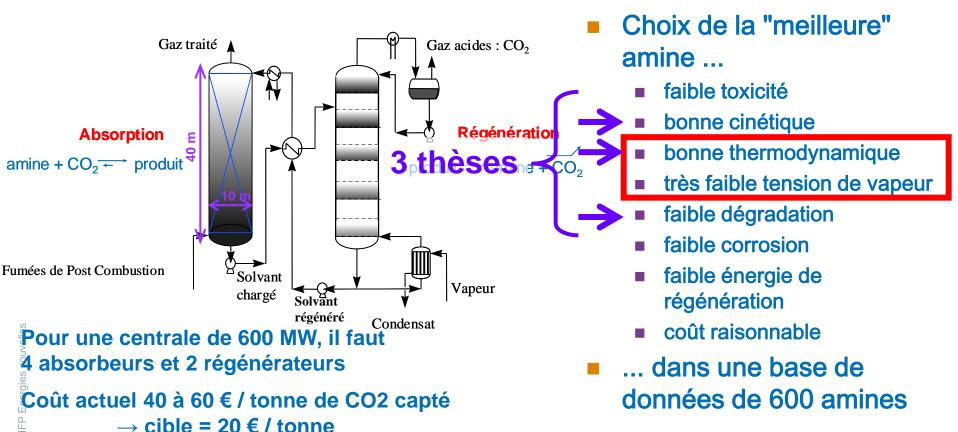


Modélisation des propriétés physico-chimiques des molécules à partir de leur structure

A. Faraj – F. Porcheron – M. Jacquin IFP Energies nouvelles

- Contexte
 - Captage du CO2 par des solutions d'amines
 - **Expérimentation haut débit (EHD)**
 - Boucle EHD
- Modélisation de la tension de vapeur d'une amine
 - Méthode QSAR-MD : Quantitative Structure-Activity Relationship par Descripteurs Moléculaires
 - Méthode des Graph Machines : QSAR-GM
 - Codage d'une molécule en graphe
 - Construction du modèle GM par apprentissage statistique
 - Comparaison des résultats des 2 méthodes
- Planification expérimentale itérative pour les GM
- Conclusions

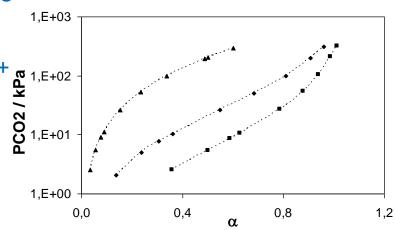

Contexte

- Captage du CO2 par des solutions d'amines
- **Expérimentation haut débit (EHD)**
- Boucle EHD
- Modélisation de la tension de vapeur d'une amine
 - Méthode QSAR-MD : Quantitative Structure-Activity Relationship par Descripteurs Moléculaires
 - Méthode des Graph Machines : QSAR-GM
 - Codage d'une molécule en graphe
 - Construction du modèle GM par apprentissage statistique
 - Comparaison des résultats des 2 méthodes
- Planification expérimentale itérative pour les GM
- Conclusions

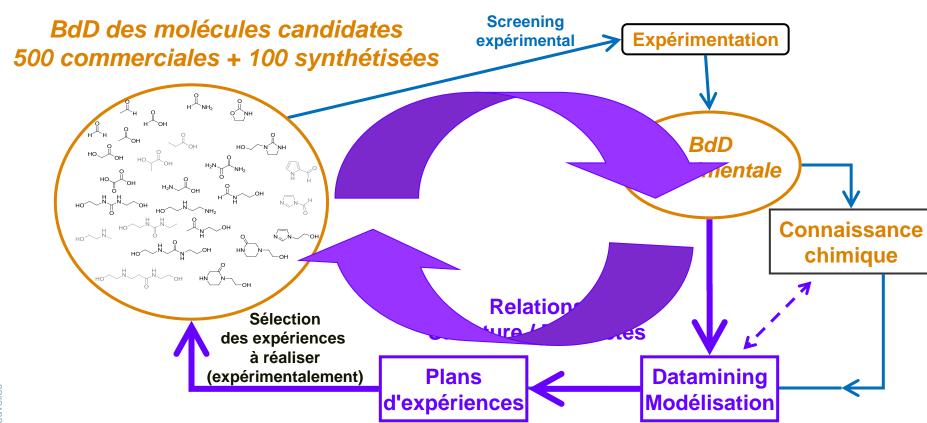
Traitement de fumées industrielles en postcombustion : captage de CO2 par solution d'amine

- **Ex.**: Centrale à charbon $T = 40^{\circ}C P = 1 \text{ bar } \%CO_2 = 10\%$
- Procédé de séparation du CO₂ par un solvant chimique à la MEA (solution la plus viable et utilisée dans le cas du traitement de gaz avec la MDEA)

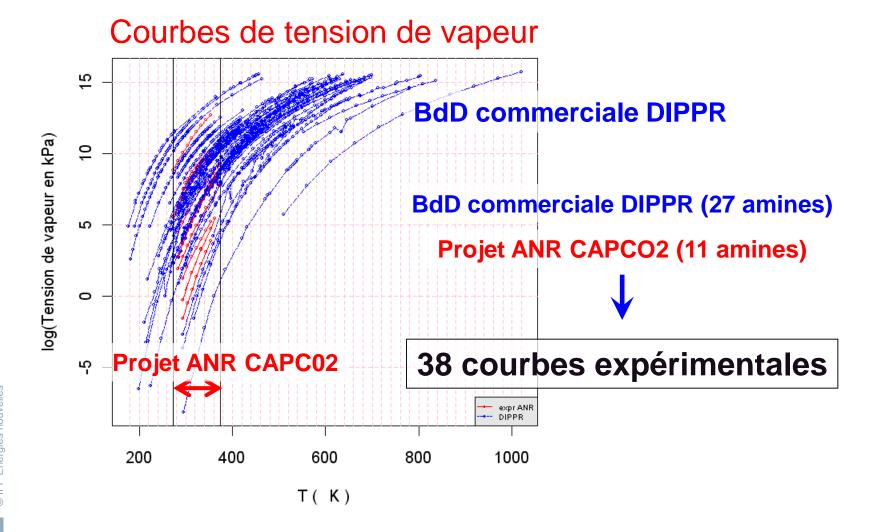
On capte 90 % du CO2 (10 % contenu dans les fumées)



Expérimentation à haut débit (EHD)


- 6 réacteurs en //
- Indépendants
 - T
 - P
 - Injection de gaz : CO₂ [ou NOx, SOx, H₂S dans le cas du traitement de gaz naturel]
- Fonctionnement automatique
- Mesures en ligne d'isothermes d'absorption par bilan matière
- BdD de 600 amines à tester (500 commerciales + 500 synthétisées à IFPEN)
- Avec les méthodes classiques : 1 isotherme / semaine
- Avec l'EHD: 12 isothermes / semaine
 - ⇒ 140 molécules testées en 2 ans
- Il faudrait encore environ 6 ans pour tester les 460 molécules restantes
 - ⇒ pas encore suffisant!

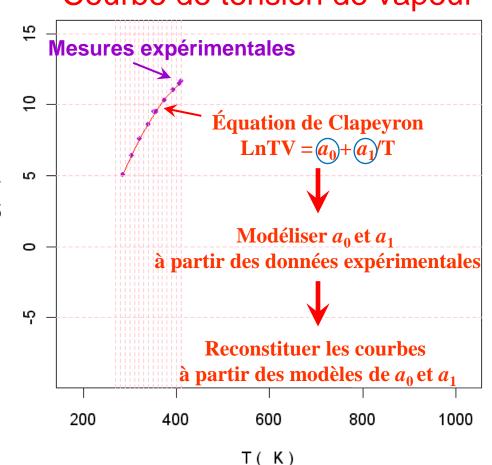
Boucle EHD



- Contexte
 - Captage du CO2 par des solutions d'amines
 - **■** Expérimentation haut débit (EHD)
 - Boucle EHD
- Modélisation de la tension de vapeur d'une amine
 - Méthode QSAR-MD : Quantitative Structure-Activity Relationship par Descripteurs Moléculaires
 - Méthode des Graph Machines : QSAR-GM
 - Codage d'une molécule en graphe
 - Construction du modèle GM par apprentissage statistique
 - Comparaison des résultats des 2 méthodes
- Planification expérimentale itérative pour les GM
- Conclusions

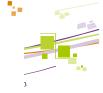
© IED Energies nouvelles

Exemple : modélisation de la courbe de tension de vapeur [Projet ANR CapCO2]



Courbe de tension de vapeur

- Modélisation par QSAR-MD
 - Régression PLS
- Modélisation Graph Machines
 - Réseau de neurones


Comparaison des résultats des deux modèles

- Contexte
 - Captage du CO2 par des solutions d'amines
 - **■** Expérimentation haut débit (EHD)
 - Boucle EHD
- Modélisation de la tension de vapeur d'une amine
 - Méthode QSAR-MD : Quantitative Structure-Activity Relationship par Descripteurs Moléculaires
 - Méthode des Graph Machines : QSAR-GM
 - Codage d'une molécule en graphe
 - Construction du modèle GM par apprentissage statistique
 - Comparaison des résultats des 2 méthodes
- Planification expérimentale itérative pour les GM
- Conclusions

QSAR-MD: Quantitative Structure/ Activity Relationship par descripteurs moléculaires

Calcul de 106 descripteurs moléculaires

CAH en 18 classes des descripteurs

Sélection de 45 descripteurs

Modélisation de a_0 et a_1 par régression PLS

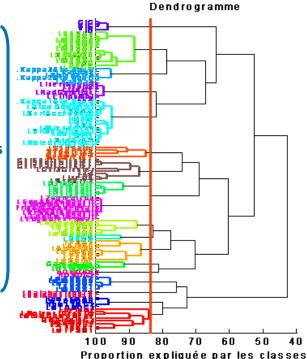
leave-one-out

Modèles de a_0 et de a_1 en fonction des 45 descripteurs moléculaires

$$\hat{a}_{0} = \alpha_{0}^{0} + \sum_{j=1,J} \alpha_{j}^{0} X_{j}$$

$$\hat{a}_1 = \alpha_0^1 + \sum_{i=1}^{n} \alpha_i^1 X_j$$

Charge de l'atome N


Basicité de la molécule

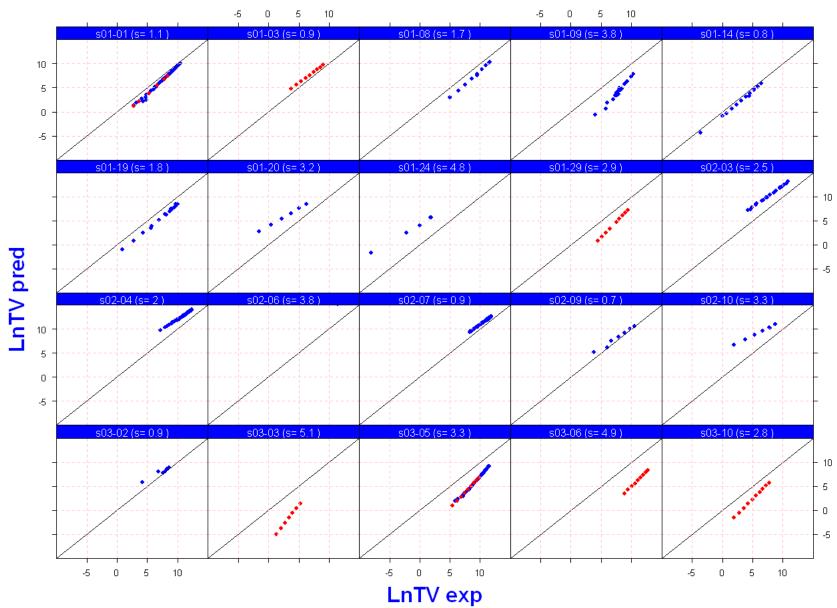
Niveau énergétique de orbitales moléculaires

Moment d'inertie

Densité moléculaire

Volume ellipsoïdal

Reconstitution des courbes de tension de vapeur

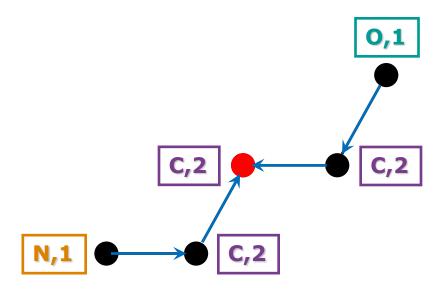


Propriétés structurales

électroniques

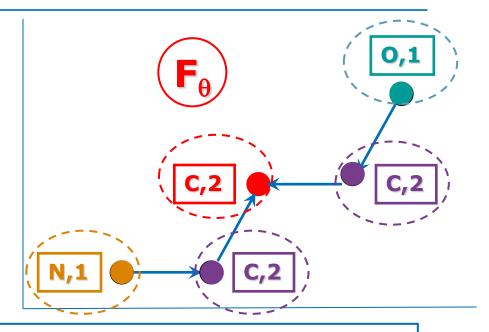
Prédiction de la tension de vapeur par la méthode QSAR-MD

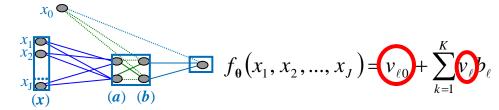
- Contexte
 - Captage du CO2 par des solutions d'amines
 - **■** Expérimentation haut débit (EHD)
 - Boucle EHD
- Modélisation de la tension de vapeur d'une amine
 - Méthode QSAR-MD : Quantitative Structure-Activity Relationship par Descripteurs Moléculaires
 - Méthode des Graph Machines : QSAR-GM
 - Codage d'une molécule en graphe
 - Construction du modèle GM par apprentissage statistique
 - Comparaison des résultats des 2 méthodes
- Planification expérimentale itérative pour les GM
- Conclusions



Construction Graphe

- Formule chimique d'une molécule : H₂N-CH₂-CH₂-CH₂-OH
 (3-amino-propane-1-ol)
- H₂N


- Chaque atome non H = Noeud
- Choix d'un noeud central
- Chaque liaison chimique = Arête orientée vers le noeud central
- Étiquette = Nature de l'atome + Nombre de liaisons

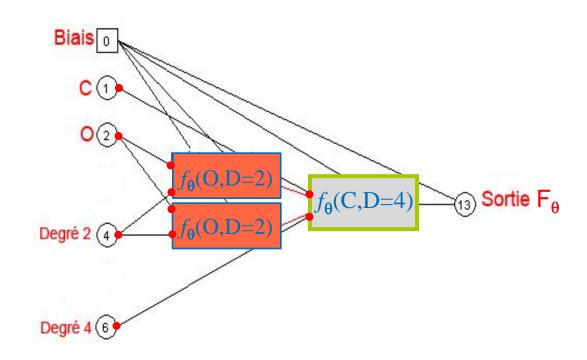

Construction Modèle

- F_θ = fonction "Graph Machine" assignée au noeud central
- Construction de F_{θ} : à partir d'une fonction élémentaire f_{θ}

$$F_{\theta} = f_{\theta}(f_{\theta}(0,0,N,1),0,C,2), f_{\theta}(f_{\theta}(0,0,O,1),0,C,2),C,2)$$

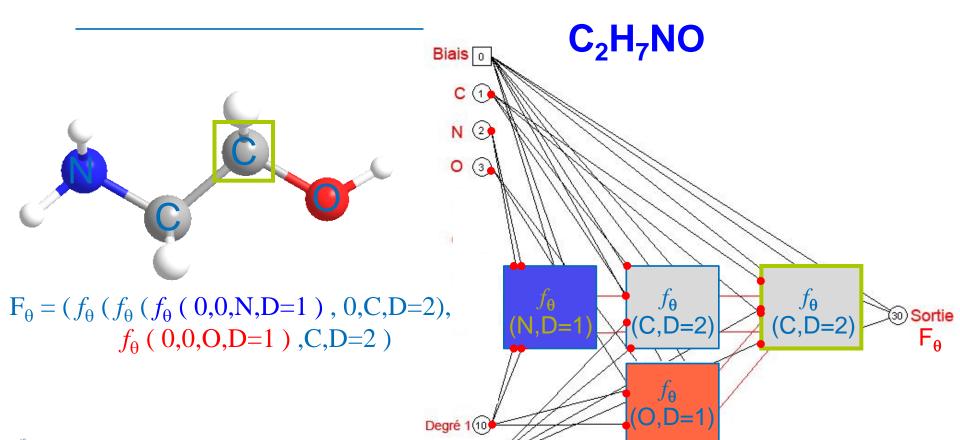
 f_{θ} est un réseau de neurones

$$a_k = \sum_{i=1}^J u_{jk} x_j \qquad b_\ell = th \left(w_{\ell 0} + \sum_{k=1}^K w_{k\ell} a_\ell \right)$$


$$th(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}}$$

Exemples de Graph Machines

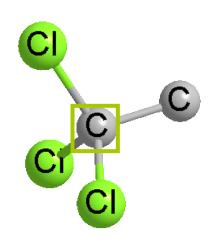
Réseau associé à la molécule de dioxyde de carbone

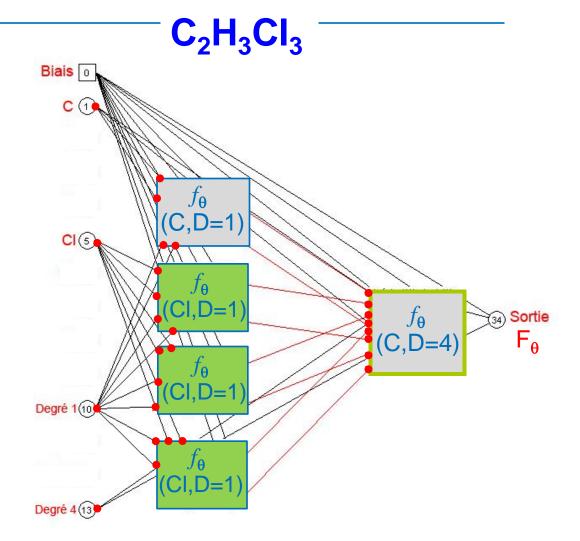


$$F_{\theta} = f_{\theta} (f_{\theta} (0,0,0,0,O,D=2)),$$

 $f_{\theta} (0,0,0,0,O,D=2),$
 $0,0,C,D=4)$

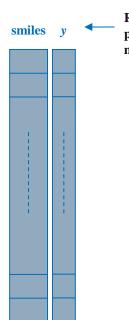
Exemples de Graph Machines


Réseau associé à la monoéthanolamine


Degré 2(11

Exemples de Graph Machines

Réseau associé au 1,1,1-trichloroéthane


$$F_{\theta} = f_{\theta} (f_{\theta} (0,0,0,0,C,D=1), f_{\theta} (0,0,0,0,Cl,D=1), f_{\theta} (0,0,0,0,Cl,D=1), f_{\theta} (0,0,0,0,Cl,D=1), f_{\theta} (0,0,0,0,Cl,D=1), C,D=4)$$

Construction du modèle GM par apprentissage

Ensemble d'apprentissage

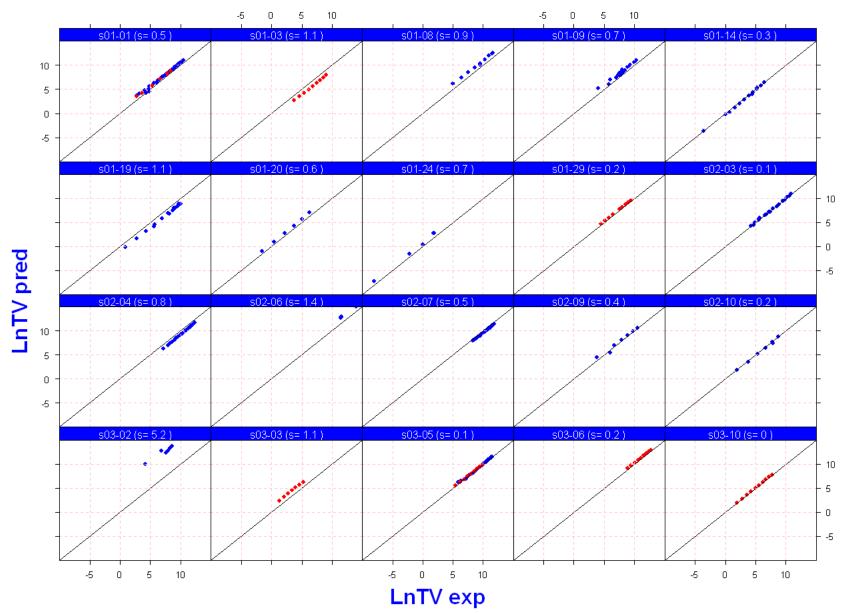
n molécules

Réponse : propriété à { n molécules + n mesures y_i de la réponse y } modéliser

n graphes acycliques orientés

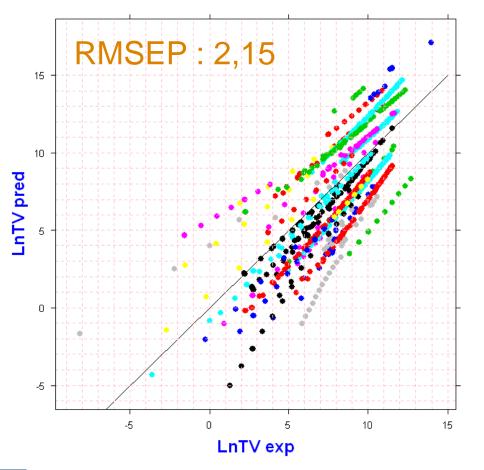
n fonctions paramétrées $F_{\theta}(i)$ composées de fonctions f_{θ} traduisant la structure des graphes, θ est identique pour les n fonctions

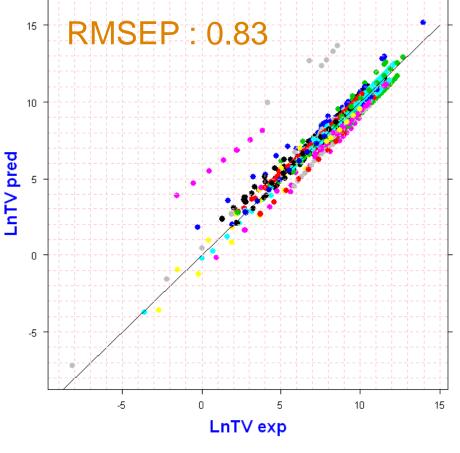
Estimation de θ par minimisation de la fonction de coût


$$J(\theta) = \sum_{i=1}^{n} \left(y_i - F_{\theta}^{(i)} \right)^2$$

Solution : $F_{\hat{\mathbf{h}}}$

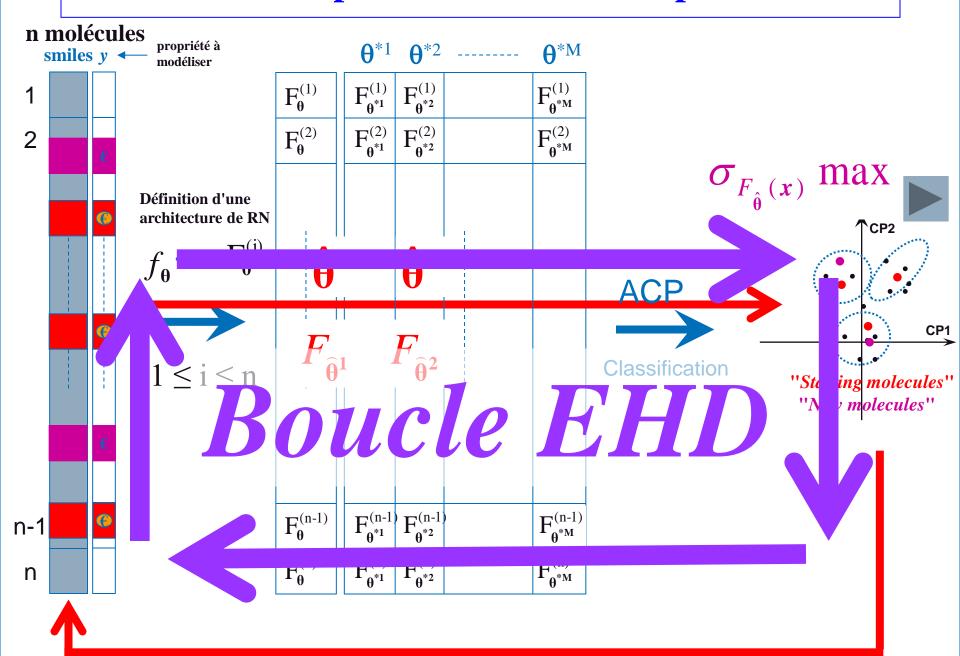
Prédiction de la tension de vapeur par la méthode des GM


- Contexte
 - Captage du CO2 par des solutions d'amines
 - **■** Expérimentation haut débit (EHD)
 - Boucle EHD
- Modélisation de la tension de vapeur d'une amine
 - Méthode QSAR-MD : Quantitative Structure-Activity Relationship par Descripteurs Moléculaires
 - Méthode des Graph Machines : QSAR-GM
 - Codage d'une molécule en graphe
 - Construction du modèle GM par apprentissage statistique
 - Comparaison des résultats des 2 méthodes
- Planification expérimentale itérative pour les GM
- Conclusions



Résultats obtenus par QSAR-MD et GM

Prédiction Gaph Machines par leave-one-out



- Contexte
 - Captage du CO2 par des solutions d'amines
 - **■** Expérimentation haut débit (EHD)
 - Boucle EHD
- Modélisation de la tension de vapeur d'une amine
 - Méthode QSAR-MD : Quantitative Structure-Activity Relationship par Descripteurs Moléculaires
 - Méthode des Graph Machines : QSAR-GM
 - Codage d'une molécule en graphe
 - Construction du modèle GM par apprentissage statistique
 - Comparaison des résultats des 2 méthodes
- Planification expérimentale itérative pour les GM
- Conclusions

Planification expérimentale itérative pour les GM

Conclusions QSAR-MD et GM : 2 approches fondamentalement différentes mais complémentaires

QSAR-MD

- données en entrée du modèle = vecteurs des descripteurs moléculaires
- la forme du modèle est identique pour tous les individus
- représentation des individus dans l'espace des descripteurs 😊
- modèle explicite : interprétation des liens entrées/sortie(s)
- méthode lourde : nécessite le calcul des descripteurs et la sélection des plus pertinents 😂
- méthode moins efficace : pouvoir de prédiction moins bon 😂

QSAR-GM

- données en entrée du modèle = graphes qui traduisent la structure des molécules
- le modèle = fonction particulière pour chaque individu
- pas d'espace de représentation des individus ⇒ sinon planification expérimentale ⊕
- modèle *boîte noire* ⇔ est-il possible d'expliciter les liens entrées/sortie(s) ? ⊕
- méthode rapide : pas besoin de calcul préalable des descripteurs 🙂
- méthode efficace : meilleur pouvoir de prédiction ©

Articles EHD et QSAR

- PORCHERON F., JACQUIN M., SALDANA D., FARAJ A., GOULON A., Graph Machines based-QSAR approach for experimental design and modeling of amines thermodynamic properties: application to CO2 capture, (en cours no spécial OGST Oil and Gas Science and Technologie consacré à l'Expérimentation Haut Débit, sous presse)
- S. Martin, H. Lepaumier, D. Picq, J. Kittel, T. de Bruin, A. Faraj, P-L. Carrette, New amines for CO2 capture. IV. Degradation, Corrosion and Quantitative Structure Property Relationship Model, Industrial & Engineering Chemistry Research, Corrosion and QSPR Model, Industrial & Engineering Chemistry Research (2012)
- T. Duerinck, P. Leflaive, I.C. Arik, G. Pirngruber, V. Meynen, P. Cool, J.A. Martens, G.V. Baron, A. Faraj, J.F.M. Denayer, (2011), Experimental and statistical modeling study of low coverage gas adsorption of light alkanes on meso-microporous silica, Chemical Engineering Journal 179 (2012) 52–62,
- A. Goulon, A. Faraj, G. Pirngruber, M. Jacquin, F. Porcheron, P. Leflaive, P. Martin, G.V. Baron, J.F.M. Denayer, (2011), Novel Graph Machine based QSAR approach for the prediction of the adsorption enthalpies of alkanes on zeolites, Catalysis today, vol.159 n.1 pp:74-83 (2011)
- Porcheron, F.; Gibert, A.; Jacquin, M.; Mougin, P. Faraj, A.; Goulon, A.; Bouillon, P.-A.; Delfort, B.; Le Pennec, D.; Raynal, L., (2010), High Throughput Screening of amine thermodynamic properties applied to post-combustion CO2 capture process evaluation. *Energy Procedia* 2010, in press. Available at http://www.ghgt.info/
- P. Leflaive, G. Pirngruber, A. Faraj, P. Martin, G.V. Baron, J.F.M. Denayer, (2010), Statistical Analysis and Partial Least Square Regression as new tools for modelling and understanding the adsorption properties of zeolites, Microporous and Mesoporous Materials 132 (2010) 246–257

Merci pour votre attention

Des questions?

Modélisation des propriétés physico-chimiques des molécules à partir de leur structure

A. Faraj – F. Porcheron – M. Jacquin IFP Energies nouvelles